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ABSTRACT

A standard model in cosmic ray diffusion theory is the so-called Bohm limit in which the particle mean free path is
assumed to be equal to the Larmor radius. This type of diffusion is often employed to model the propagation and
acceleration of energetic particles. However, recent analytical and numerical work has shown that standard Bohm
diffusion is not realistic. In the present paper, we perform test-particle simulations to explore particle diffusion in
the strong turbulence limit in which the wave field is much stronger than the mean magnetic field. We show that
there is indeed a lower limit of the particle mean free path along the mean field. In this limit, the mean free path is
directly proportional to the unperturbed Larmor radius like in the traditional Bohm limit, but it is reduced by the
factor § B/ By where By is the mean field and 6 B the turbulent field. Although we focus on parallel diffusion, we
also explore diffusion across the mean field in the strong turbulence limit.
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1. INTRODUCTION

Cosmic rays propagate in turbulent plasmas in different
astrophysical scenarios ranging from the solar system to the
intergalactic space. In all such systems one finds a large scale or
mean magnetic field that is superposed by a turbulent component
thatis often associated with propagating plasma waves and, thus,
the component is often called the wave field. Therefore, we can
write the total magnetic field as B = Bye, + 3 B, where we have
chosen our Cartesian system of coordinates so that the mean
field By points in the z-direction. The aforementioned mean
field alone would only force the particles onto a well-defined
trajectory that would correspond to a helix. In this particular
case, which is often referred to as the unperturbed system,
the particles move with constant speed along the mean field
while the perpendicular motion is a uniform circular motion.
The unperturbed motion can easily be derived analytically from
the Newton—Lorentz equation. In this case, the characteristic
quantities used to describe the orbit are the particle speed v,
pitch-angle cosine . = v)/v, and gyro-frequency €2, which can
be expressed by Q = g By/(mcy). In the latter formula we have
used the particle charge g, particle rest mass m, speed of light c,
and Lorentz factor y .

However, there is turbulence in real physical scenarios—such
turbulent magnetic fields scatter the energetic particles and par-
ticle motion becomes a diffusive motion described by diffusion
parameters. Therefore, in order to compute cosmic ray distribu-
tion functions, a diffusive transport equation has to be solved.
The following is an example of a transport equation (see, e.g.,
Schlickeiser 2002):
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In the latter equation we used the parallel diffusion coefficient
K| = K, the perpendicular diffusion coefficients «;;, the rate

of adiabatic deceleration D, and the momentum diffusion coef-
ficient A describing stochastic acceleration. More complicated
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forms of the transport equation can be found in the literature.
There are cases, for instance, in which the assumption of a con-
stant mean field is no longer valid and the so-called adiabatic
focusing has to be taken into account leading to a modified
equation (see Schlickeiser et al. 2007). In all forms of the trans-
port equation, there are at least two crucial transport parameters,
namely the parallel spatial diffusion coefficient « and the per-
pendicular diffusion coefficient x| (in axi-symmetric scenarios
only the parameter k| = k., = ky, controls the perpendicular
diffusion term in the transport equation).

Obviously, parallel and perpendicular diffusion coefficients
have to be known in order to describe the motion of cosmic
rays. In principle there are two methods to estimate these
parameters. The first approach is analytical theory. Early work
was based on perturbation theory, also known as quasi-linear
theory, which was originally developed by Jokipii (1966).
Although the latter work was pioneering and is still important in
current applications, quasi-linear theory has its limitations (see
Shalchi 2009a for a review). Therefore, nonlinear methods were
developed to achieve a more complete and accurate description
of cosmic ray transport (see, e.g., Shalchi 2009a, 2010). The
perturbation theory is thought to be valid in the weak turbulence
limit in which the true particle orbit is close to the unperturbed
trajectory. Very strong turbulence, in which the wave field is
much stronger than the mean field § B >> By, is another extreme
limit. In this particular case it is often assumed that, the so-called
Bohm limit is found, where by definition

A~ Ry (Standard Bohm Limit), 2)
where we used the unperturbed Larmor radius R; and the
(isotropic) particle mean free path A = 3k/v. We refer to
Equation (2) as the standard Bohm limit. This limit is ques-
tionable, however, because in real physical scenarios particles
experience strong scattering, and a well-defined gyro-rotation
can no longer be found (see, for example, Figure 2 of Giacalone
& Jokipii 1999).

Shalchi (2009b) used methods of nonlinear diffusion theory to
derive a different formula in the strong turbulence limit, namely

By
)»” ~ RL—

5B (Modified Bohm Limit). 3)
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We call this formula the modified Bohm limit. In this case
the parallel mean free path is still directly proportional to the
unperturbed Larmor radius Ry, but is reduced by the factor
6B/ By. Equation (3) was confirmed analytically in more recent
work (see Srinivasan & Shalchi 2014). Formula (3) was derived
for the parallel mean free path. Perpendicular diffusion in
the strong turbulence limit is another interesting topic. If the
turbulence is isotropic and strong, one would expect to see
isotropic particle diffusion, i.e., A A~ A.

Above we have presented some analytical approaches and
results in different physical limits. Another powerful tool in
diffusion theory is test-particle simulations, where a certain
turbulence model is simulated, and then the Newton—Lorentz
equation is solved numerically in order to obtain a high
number of particle orbits. By using simple methods of statistical
physics, one can easily obtain diffusion coefficients from these
test-particle trajectories. For different turbulence models and
parameters, computer simulations were performed in the past
(see, e.g., Giacalone & Jokipii 1999; Michatek 2001; Casse
et al. 2002; Qin et al. 2002a, 2002b, 2006; Candia & Roulet
2004; Shalchi 2005; Zimbardo et al. 2006; Tautz 2010; Dosch
etal. 2011). It remains unclear what the diffusion parameters are
in the strong turbulence limit and whether or not Equation (2)
or Equation (3) are correct.

This article will explore numerically the transport of energetic
particles along and across the mean magnetic field in the strong
turbulence limit. We focus on the testing the Bohm limit, but
will also explore how the simulated turbulence model affects
the diffusion parameters. It is our aim to explore the validity of
the limits (2) and (3).

2. TEST PARTICLE SIMULATIONS

In computer simulations three steps must be performed in
order to obtain diffusion parameters, which are listed as follows.

1. A specific turbulence model has to be simulated. Here, we
consider the slab model, a combined slab/two-dimensional
(2D) model, and the isotropic model.

2. The Newton—Lorentz equation has to be solved numerically
for an ensemble of particles to obtain their orbits.

3. From these test-particle trajectories, one can easily obtain
the diffusion coefficients in the different directions of space.

We will briefly discuss the methods used in the simulations
in order to obtain the diffusion coefficients and mean free paths.

2.1. Turbulence Models

As described above, we have to specify the turbulence model.
We perform the simulations for three specific models, which are
listed as follows.

1. The slab model in which by definition 6B = J§B(z2)
(i.e., the turbulent field depends only on the coordinate
along the mean field). Furthermore, we have §B, = 0
due to the solenoidal constraint. This means that in slab
turbulence the turbulent field vector is always perpendicular
with respect to the mean field.

2. We also consider a slab/2D composite model in which we
superpose the slab model discussed above with a 2D model
in which we have by definition § B = § B(x, y). Similar to
the slab model, the 2D model has reduced dimensionality.
However, we still have some choice concerning the allowed
magnetic field orientations. Here, we use a full 2D model
where we also have § B, = 0. This means that the coordinate
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dependence, as well as the field vector itself, are 2D. Each
model has a weight contributing to the total power. In our
case we used a mixture proposed by Bieber et al. (1996)
based on spacecraft measurements of the interplanetary
magnetic field in which a 80% 2D fluctuation and/20%
slab fluctuation is obtained.

3. Isotropic turbulence in which the turbulence is full isotropic
and, therefore, only the mean magnetic field breaks the
symmetry of the physical system.

2.2. Generating the Turbulence

The most commonly used technique to generate magnetic
turbulence is to sum over a large number of plane waves, N,
with random phases, polarization, amplitudes, and orientations.
Batchelor (1953) showed that when the number of wave modes
tends to infinity, turbulence becomes isotropic and spatially
homogeneous. Strictly speaking, in reality, wave-numbers also
extend until infinity, but as we are using a numerical approach
infinity is out of reach, so the limitation should take place (see
below for simulation parameters). Speaking mathematically,
turbulent fields are generated as the following summation over
the N,, wave modes:

N,

SB(x,y,2) =Re Y Ak)E, expitkz, +By).  (4)
n=1
where R
&, = cos(a,)X), +1 sin(a,)y,. 5)

denotes the field orientation. The primed notation refers to
the turbulence coordinates obtained from a three-dimensional
rotational matrix given by

X, cosf,cos¢, cosb,sing, —sinf,\ /x
(y,@) = < —sing, cos ¢, 0 )(y) . (6)
z, sin6, cos¢, sinf,sing, cosb, Z

In Equations (4)—(6) we used A(k,) to represent the wave
amplitude associated with mode n. In addition, k, stands for
the wave-number, ¢, for polarization angle, 6, and ¢, define
the orientation of mode n, and B, is the plane wave phase. Note
that the static wave’s orientation is governed by the following
relation:

zZ,, = sin6, cos ¢, x + sin b, sin ¢, y + cos 6, 2. @)

As presented below, the turbulence model controlled by the
choice of angles will restrict the direction. One of the points
that should be emphasized here is that turbulent fields are
divergence-free (i.e., V - §B = 0), as Maxwells’ equations
predict. This condition is preserved via the relation, k, - é:, =0,
since 7’ (plane waves orientation) is always perpendicular to

&An, as defined above. Isotropic turbulence can be achieved
by summing over a high number of wave modes within our
simulations, N = 512, with all angles 6, ¢, «, and 8 chosen
randomly and which lie in the interval [0, 27[. For the slab
model, the orientation of plane waves is the same as the mean
field, 7/ = z, so we set 6, = 0 in Equation (6). On the other
hand, the 2D model requires 7/ L z for the turbulent field to
only depend on X and § coordinates, hence setting § = /2
is sufficient. This paper is restricted to working with a full 2D
model as presented above (i.e., having §B, = 0 or B L %),
so an additional condition should be added, where we set the
polarization angle o = /2.
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Figure 1. Spectrum for slab, composite, and isotropic turbulence with respective
values of ¢ = 0.0, 2.0, and 3.0 over a spread of wave-numbers ranging from
Kminlo = 1073 t0 kmaxlo = 10° in dimensionless units. At klo = 1, a transition
from energy to inertial range takes place.

Another ingredient in the description of turbulence is the tur-
bulence power spectrum, which describes how the magnetic
energy is distributed among different wave numbers. The dif-
ferent spectra used in this paper are visualized in Figure 1.
They are based on the model originally proposed by Shalchi &
Weinhorst (2009), and are usually divided into different ranges.
The larges scales are usually referred to as the energy range
and the intermediate scales are called the inertial range. The
characteristic length scale where the turnover from the energy
range to the inertial range occurs is usually called the bendover
scale. One could also add a so-called dissipation range describ-
ing the small scales. This regime, however, is only important for
very low energy particles and we do not investigate this type of
transport in the current paper. In the energy range we assume
a power-law dependence of the magnetic fluctuation with k9,
where ¢ is called the energy range spectral index. In the in-
ertial range we also assume a power-law with k=, where s is
the inertial range spectral index. Whereas one usually assumes
that s = 5/3 in agreement with the theory of Kolmogorov (see
Kolmogorov 1941), the value of g is unknown. Therefore we use
different values for the energy range spectral index. Below we
use g = [0.0, 2.0, 3.0] for slab, 2D, and isotropic turbulence,
respectively.

Mathematically speaking, the wave amplitude A(k,) reads

Ny —1
A2(k,) = G(k,)Ak, ( > G(kn)Ak,]> , 8)

n=1

where the turbulence spectrum is defined as a Kappa-type form
continuously differentiable:

ki
3 2 M
(1 i k,%)(Hq)/
Ak, is the spacing between wave-numbers, where a logarithmic

spacing in k, is implemented so that Ak, / k, is constant via the
relation

G(ky) = ©)

B _ o [ln(kmax/kmm)} 10)

ky N -1

Figure 1 shows the turbulence spectrum we use for the three
different turbulence models (slab, composite, and isotropic).

HUSSEIN & SHALCHI

There are two main constraints that should be taken into account
for each simulation. First, what is known by the resonance
condition ensuring the existence of a wave-number satisfying
therelation kR, = 1. Here w is the pitch-angle cosine and R, is
the unperturbed Larmor radius defined as R;, = pc/eBy = Rl
where R is the dimensionless rigidity. This constraint is ensured
as u € [—1,1], klp € [1073,10%], and R = [0.1, 1, 10]. We
also ensure that no particle is traveling more than the distance
Liax = kr;iln. This is ensured via the relation Qtpknmin Ry < 1,

which corresponds to vfyax < Lmax-

2.3. Solving the Newton—Lorentz Equation

The Newton—Lorentz equation for a particle in purely
magnetic turbulence reads

=Ly x Blx), 11, (11)
C

where x(¢) is the position of the charged particle. Furthermore,
we used the particle charge ¢, the speed of light ¢, the particle
velocity v, and the (relativistic) momentum p = myv, where
y is the Lorentz factor. Our code uses a Monte Carlo method
where each particle injected has a different and random initial set
of parameters. Initially, all particles have the same z-coordinate
and energy value. However, their initial x and y coordinates and
values of the pitch-angle cosine p are different. The particles are
traced for a fairly sufficient time for thousands of gyro-periods
in order to precede the initial ballistic regime in which the
particle’s diffusion coefficient is linearly proportional to time.
There are two ways to implement the generated magnetic fields
in such codes.

1. Using discrete grid. With grid systems we first cre-
ate and save the fields data at each grid point using
Equations (4)—(10) for the whole space and then interpolate
for where the particle is moving. This could be done using
a 2D grid for the perpendicular directions, accompanied
with a one-dimensional grid for the parallel direction, or
rigorously using a three-dimensional grid (see, for exam-
ple, Mace et al. 2000; Qin et al. 2002a; Casse et al. 2002;
Pommois et al. 2007; Reville et al. 2008).

2. Creating fields along the trajectory. Fields are generated
anew at each time step where it is needed using the same
set of equations. Fields are generated anew at each time
step. With the known initial position of the particle, we
can compute the initial magnetic field vector. The latter
quantity is then seeded to the numerical integrator to solve
for position which is then seeded to turbulence creation
and so on (see, e.g., Giacalone & Jokipii 1999; Tautz 2010;
Dosch et al. 2011).

Each method has pros and cons concerning time consumption,
memory usage, and accuracy. Based on previous experience with
grid points codes, it seems to us that the second method is better
than the first. It saves time, uses less memory (given that too
many grid points must be used to achieve acceptable accuracy),
and it generates fields only where the particle is actually moving,
not on all the provided space as the first method does. On
the other hand, when it comes to visualization, the grid-based
system allows us to visualize the magnetic field lines across the
whole space and then see how the particles are moving in the
vicinity of those field lines, whereas with the method we are
using this is not possible, as magnetic information is restricted
for where particles are moving.
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The numerical solver used to integrate the Newton—Lorentz
equation is Runge—Kutta of 4th order with an adaptive time-step
option based on calculating the gyro-frequency, Q = g By/ymc,
where By is the background field, and multiplying its inverse by a
point-one factor to keep truncation errors under control. To allow
for generality of the code parameters were made dimensionless
so we define the characteristic length, known as the turbulence
bendover scale, [y, for which the position parameters are scaled
to. In addition, /; denotes the turnover from the energy to
the inertial range (see Figure 1), where estimates of solar
system bendover scale is around [, = 0.03 AU. The relativistic
gyro-frequency is the inverse of the characteristic time, hence
we could define the (dimensionless) running time as 7 =
Qt = gByt/ymc. Dimensionless rigidity is given by, R =
Ry /ly = v/Qly. Given those dimensionless parameters, one can
derive the numerically solved dimensionless Newfon—Lorentz
equation, coupled with the trajectory equation, as follows:

dX _g (12)
dtly

d . OB,

d_'CR:RX <830+B—0853> (13)

where ép, and ésp denote the unit vectors pointing in the
direction of the background and turbulent magnetic fields,
respectively. Note that the code implements the concept of
turbulence strength, § B/ By, directly in the solved equation.

2.4. Calculating the Transport Parameters

If the particle trajectories are obtained numerically, the
remaining step is the calculation of the diffusion coefficient.
Often diffusion coefficients are computed using mean square
displacements:

= 1li Ld Ax;)? 14
K“_zinéloiﬁ« X)) (14)

This formula, however, cannot be used if it comes to the
drift coefficient k,, (see Shalchi 2011). Alternatively, one can
compute the diffusion parameter with

ki = lim (Ax;v;) (15)
1—00
which avoids the usage of derivative operators. In the present
paper we compute mean free paths, defined as

Ai =3k /v (16)

because the latter parameter has more appropriate units (i.e., we
can compute the ratio A; /Iy, where [j is the characteristic length
scale of the turbulence).

3. RESULTS
3.1. Simulation Parameters

We choose three values of particle rigidity R € [0.1, 1.0,
10.0]. For each rigidity, we perform simulations for the five
different values of turbulence strength §B/By € [0.1, 1.0, 10.0,
50.0, 100.0], and we consider three different turbulence models,
namely slab, composite, and isotropic turbulence. Therefore, we
have 45 simulations in total.

The trajectories of 1000 particles were traced for a sufficient
dimensionless time, Tynax = Qfmax = 10%, and averaged using
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Figure 2. Mean free paths Ay./lo, Ayy/lo, and A;;/lp for R = 10.0 and
8B/By = 100 vs. Qt.

1000 Realization, which means that every particle has its own set
of initializing parameters, mainly turbulence angles, supported
by the high efficiency and the processor capacity provided
by WestGrid National Facility. This feature allows for more
accuracy compared to similar previous works, given that in
reality each particle sees the turbulence from its perspective. We
used N,, = 512 different wave modes to create turbulence at
each time step, which is enough to achieve isotropic conditions
with wave-numbers in the coordinates x, y, and z, ranging
from kminlo = 1073 t0 kmaxlo = 10° in dimensionless units. The
energy range, g, as presented above, differs with respect to the
turbulence model. The Kolmogorov (1941)-like inertial range is
the same for all models, namely s = 5/3.

3.2. The Parallel Mean Free Path

Our main focus in this paper is to check the validity of the
modified Bohm limit for strong turbulence. The validity of the
standard Bohm limit was explored before (see, e.g., Dosch et al.
2011), but due to the too low achievable maximum turbulence
strength, no conclusion was obtained for the particle transport in
the strong turbulence limit. In such previous work the maximum
was (§B/By)* = 10, whereas in our work we reach up to
(8B/By)* = 10*. Figure 2 shows the mean free paths in the
different directions in space for R = 10.0, 6B/By = 100,
and isotropic turbulence. Our proposed formula, Equation (3),
predicts a value of A /[y = 0.1, and using an isotropic model at
high turbulence we anticipate that A,, = Ay, = AL ~ Ay.
From Figure 2 it can be determined that Aj/lp ~ 0.11,
Axx/lo ~ Ayy/lo 22 0.13, and the diffusive behavior is obvious,
which matches with our expectations.

Figures 3—5 show the parallel mean free path X /ly versus
the turbulence strength 6B/By for R = 0.1, 1.0, and 10.0,
respectively. In all the figures we have shown the results for
slab, composite, and isotropic turbulence.

We clearly show that the well-known and widely used
standard Bohm limit, Equation (2), is not valid. It seems that the
modified limit, Equation (3), is indeed the correct lower limit for
the parallel diffusion coefficient. One of the interesting values to
plotis Ay /Ry versus Ry, leaving the factor By/6B on the other
side of the equation, such that A /R; ~ By/éB. Figures 6-8
show the results for slab, composite, and isotropic turbulence,
respectively. Shalchi (2005) performed similar simulations with
particles of rigidity R = 0.1 and a composite turbulence model
of strengths ranging from 0.5 to 100 and calculated values
of Ay/lo, Ai/lp, and A /Aj. The author did not compare his
simulations with the standard Bohm limit and the modified limit
did not exist at that time. In Figure 3 we plotted those results
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Figure 3. 1| normalized to the bendover length [ vs. turbulence strength 6 B/ By
for low energetic particles R = 0.1. The plot also shows A /[y for the three
different models (slab, composite, and isotropic), plotted as circles, squares,
and stars, respectively. The dashed lines represent the standard Bohm limit with

A ~ Ry, whereas the solid lines indicate the modified Bohm limit where
A ~ Ry By/éB. Triangles represent the Shalchi (2005) simulations.
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Figure 4. Same as Figure 3, but for intermediate particle rigidities with R = 1.0.
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Figure 5. Same as Figure 3, but for high particle rigidities with R = 10.0.

for comparison. Despite the fact that the Shalchi (2005) results
overcome the Bohm limit, it seems, that the general behavior of
A/ lo in both simulations is similar.

3.3. The Perpendicular Mean Free Path

In the following we discuss the perpendicular diffusion
coefficient. Here we only consider axi-symmetric turbulence,
and, therefore, we have k| = «,, = k,,. Previous works with
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Figure 6. 1| /(Rlp) vs. Rfor 6 B/ By = 10.0, 50.0, and 100.0 plotted as circles,
stars, and squares, respectively, for the slab model validating the relation of
A /(Rlp) ~ Bo/8B. Dashed lines from top to bottom correspond to the right
hand side of the latter relation, that is Byp/§B = 0.1, 0.02, and 0.01.
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Figure 7. Same as in Figure 6, but for composite turbulence.
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Figure 8. Same as in Figure 6, but for isotropic turbulence.

a maximum turbulence strength of (§B/By)> = 10 showed

that A, /ly is linear in R (see, e.g., Giacalone & Jokipii
1999; Qin 2002; Tautz et al. 2006). Furthermore, Giacalone
& Jokipii (1999) showed that «, is linear in 6 B/ By, but the
author’s maximum strength was § B = By. In our simulations
we recovered the previous results, which could be regarded
as intermediate turbulence, and revealed what happens when
turbulence is extremely strong. Figures 9 and 10 show A, /[
versus R and 6B/ By, respectively, for both composite and
isotropic turbulence. As shown there, A, /[y remains linear in
R for both composite and isotropic turbulence. The dependence
on 8§ B/ By is more complicated. For composite turbulence, the
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Figure 9. Perpendicular mean free path, A, normalized to [y with respect to
rigidity R for high turbulence scenarios of § B/ By = 10, 50, and 100, plotted as
circles, stars, and squares, respectively, for composite (solid lines) and isotropic
(dashed lines) models.
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Figure 10. A, /ly vs. §B/By for the three different particles of R =
0.1, 1.0, and 10.0 plotted as stars, circles, and squares, respectively, for com-
posite (solid lines) and isotropic (dashed lines) models.

perpendicular mean free path increases linearly with § B/ Bj.
For isotropic turbulence, however, it increases in the weak
turbulence regime and decreases in the strong turbulence regime.

Figure 11 shows A /A versus § B/ By for R = 0.1 for both
composite and isotropic turbulence. For the sake of comparison
we also show the results obtained by Shalchi (2005) for
composite turbulence. It seems that in the weak turbulence
regime, A /A is o< (8B/By)¥, where o is ~3.1 and 3.3 for
composite and isotropic turbulence, respectively. For strong
turbulence we can see a clear deviation between the results
obtained for composite and isotropic turbulence. For the former
case the ratio A /A still increases with § B/B,, but « drops
to values around 2. Furthermore, we find that 1| /A exceeded
unity, which corresponds to previous observations (see Zhang
et al. 2003 and Dwyer et al. 1997). Despite a numerical factor at
weak turbulence, our results for A | /A agree well with Shalchi
(2005). For strong isotropic turbulence, we find A; ~ A as
expected.

4. SUMMARY AND CONCLUSION

Here we have revisited an important and fundamental topic
in astrophysics, namely the transport of energetic particles such
as cosmic rays. We used a test-particle method to compute
diffusion coefficients along and across the mean magnetic field.
Our main aim was to explore the validity of the Bohm limit, but
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Figure 11. A /A vs. 8B/By for composite (circles) and isotropic (squares)
models. The case considered refers to low energetic particles with R = 0.1.
Shalchi (2005) results are plotted as stars for comparison.

we also investigated the influence of the turbulence model on
the transport.

In previous works, researchers used the standard Bohm limit
in which we have A, ~ R, where R, is the unperturbed
Larmor radius. Particularly in investigations of diffusive shock
acceleration at supernova shocks, the assumption of Bohm
diffusion seems to be standard (see, e.g., Berezhko & Volk 1997;
Uchiyama et al. 2007; Jones 2011; Bell et al. 2013). However,
the standard Bohm limit disagrees with the limit derived in
Shalchi (2009b) and Srinivasan & Shalchi (2014) where the
formula Ay &~ R;By/éB is obtained for the parallel mean
free path in the strong turbulence limit (here we have omitted
numerical factors). We have shown here that the simulated
parallel mean free path can be much shorter than the unperturbed
Larmor radius and, therefore, the limit Ay ~ R is not correct.
Furthermore, we did not find any evidence that the latter formula
is valid in a certain parameter regime. Is seems, however, that the
formula Ay &~ Ry Bo/d B is indeed correct in the limit of strong
turbulence. We have shown that extremely strong turbulence is
needed in order to get close to this formula.

We have also obtained perpendicular diffusion coefficients
from our simulations. A, /[y seems to be directly proportional
to rigidity R regardless of the turbulence model or strength. If
one computes A /Iy versus § B/ By, however, the isotropic and
composite results are different in the strong turbulence regime.
In the former case, one finds isotropic scattering with 1| ~ A
as expected. For composite turbulence, the perpendicular mean
free path increases with § B/By. In this particular regime the
influence of the turbulence model is crucial.
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