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ABSTRACT

A model for noisy reduced magnetohydrodynamic turbulence was recently proposed. This model was already used
to study the random walk of magnetic field lines. In the current article we use the same model to investigate the
diffusion of energetic particles across the mean magnetic field. To compute the perpendicular diffusion coefficient,
two analytical theories are used, namely, the Non-Linear Guiding Center theory and the Unified Non-Linear
Transport (UNLT) theory. It is shown that the two theories provide different results for the perpendicular diffusion
coefficient. We also perform test-particle simulations for the aforementioned turbulence model. We show that
only the UNLT theory describes perpendicular transport accurately, confirming that this is a powerful tool in

diffusion theory.
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1. INTRODUCTION

In this paper we explore perpendicular diffusion of energetic
particles such as cosmic rays due to the interaction with turbulent
magnetic fields. The perpendicular diffusion coefficient is one
of the elements entering the cosmic ray transport equation.
In general, the diffusion of energetic particles is important to
understand different processes in space and astrophysics. Some
examples discussed more recently in the literature are

1. the acceleration of particles due to turbulence (see Lynn
et al. 2014);

2. shock acceleration at interplanetary shocks (see Li et al.
2012; Wang et al. 2012);

3. solar modulation studies (see Alania et al. 2013;
Engelbrecht & Burger 2013; Manuel et al. 2014; Potgieter
et al. 2014);

4. the motion of cosmic rays in our own and in external
galaxies (see Buffie et al. 2013; Berkhuijsen et al. 2013);

5. diffusive shock acceleration in supernova remnants (see
Ferrand et al. 2014).

Here, we explore perpendicular transport analytically and nu-
merically for a specific turbulence model.

In the solar system, for instance, energetic particles interact
with the solar wind plasma and, therefore, are scattered. Spatial
diffusion is mainly caused by turbulent magnetic fields § B. In
addition to such fields we also find an ordered magnetic field B
which breaks the symmetry of the considered physical system.
Therefore, we have to distinguish between diffusion of particles
along and across the ordered magnetic field, which can also be
called the mean magnetic field.

Diffusion across this field, also called perpendicular diffusion,
is very difficult to describe analytically (see Shalchi 2009
for a review). More than a decade ago some progress was
achieved with the development of the Non-Linear Guiding
Center (NLGC) theory of Matthaeus et al. (2003); more recently
the Unified Non-Linear Transport (UNLT) theory was presented
in Shalchi (2010). UNLT contains the NLGC theory, the field
line transport theory of Matthaeus et al. (1995), and the quasi-
linear theory of Jokipii (1966) as special limits. Furthermore,
the theory automatically provides a subdiffusive result for

magnetostatic slab turbulence in agreement with the theory of
reduced dimensionality (see Jokipii et al. 1993; Jones et al.
1998) and computer simulations (see, e.g., Qin et al. 2002).

In order to compute the perpendicular diffusion coefficient
based on the aforementioned transport theories, one has to
employ a certain turbulence model. Previous models for which
the perpendicular diffusion coefficient was calculated are the
slab/two-dimensional (2D) composite model (sometimes called
the two-component model) and the Goldreich—Sridhar model
(see, e.g., Tautz & Shalchi 2011; Shalchi 2013a). In this paper
we employ another model which was recently proposed, namely,
the noisy reduced magnetohydrodynamic (NRMHD) turbulence
model of Ruffolo & Matthaeus (2013).

Here, we explore perpendicular diffusion in NRMHD tur-
bulence analytically and numerically. By doing this we try to
achieve the following:

1. showing how the field line random walk (FLRW) limit with
the correct field line diffusion coefficient can be obtained
from the UNLT theory.

2. obtaining for the first time the perpendicular diffusion
coefficient of energetic particles for NRMHD turbulence.

3. testing the validity of NLGC and UNLT theories by
comparing them with test-particle simulations in order to
check our understanding of perpendicular diffusion.

The remainder of this paper is organized as follows. In
Section 2, we briefly present the NLGC theory as well as the
UNLT theory. A discussion of the NRMHD turbulence model is
given in Section 3. In Section 4, we compute the perpendicular
diffusion coefficient analytically and, in Section 5, we use
simulations to test our analytical findings. We end with a short
summary and some conclusions in Section 6.

2. ANALYTICAL THEORIES FOR
PERPENDICULAR DIFFUSION

An analytical description of perpendicular diffusion is dif-
ficult (see Shalchi 2009 for a review) since the quasi-linear
approximation is only valid in exceptional cases. A promising
theory was proposed by Matthaeus et al. (2003), which is called
the NLGC theory. This theory was compared with test-particle
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simulations and solar wind observations and agreement was of-
ten found (see, e.g., Matthaeus et al. 2003; Bieber et al. 2004).
However, there are also problems with the theory such as the fact
that the theory does not provide subdiffusive transport for slab
turbulence' (see Shalchi 2009; Tautz & Shalchi 2011). There-
fore, different extensions of the NLGC theory were proposed.
One example is the Extended Non-Linear Guiding Center pro-
posed by Shalchi (2006). This theory was explicitly developed
to handle perpendicular transport in slab/2D composite turbu-
lence and provides the correct subdiffusive behavior for the
pure slab case. Alternative approaches were proposed thereafter
(see, e.g., Qin 2007; Ghilea et al. 2011; Ruffolo et al. 2012).
All these approaches are basically extensions of the original
NLGC theory.

A very different approach was proposed by Shalchi (2010),
namely the UNLT theory. The main problem in analytical theo-
ries for perpendicular diffusion is the emergence of fourth order
correlation functions. In the NLGC theory and the aforemen-
tioned extensions, such fourth order correlations are approxi-
mated by a product of two second order correlations. The second
order correlations are then approximated by different models
such as a diffusion model (Matthaeus et al. 2003; Shalchi 2006)
or a random ballistic model (Ghilea et al. 2011; Ruffolo et al.
2012). The UNLT theory is based on the direct evaluation of
fourth order correlations by using the (pitch-angle dependent)
Fokker—Planck equation. The UNLT theory correctly describes
subdiffusive transport in slab turbulence and contains the correct
FLRW limit without specifying the turbulence properties? (see,
e.g., Shalchi 2014). It also contains the NLGC theory and the
field line diffusion theory of Matthaeus et al. (1995) as special
limits, hence the name UNLT theory is justified.

In the current paper, we compute the perpendicular diffusion
coefficient based on the NLGC theory and the UNLT theory. In
the following two paragraphs, these two theories are discussed.

2.1. The Non-Linear Guiding Center Theory

In Matthaeus et al. (2003), the so-called NLGC theory was
derived. The latter theory is based on several assumptions
leading to the following nonlinear integral equation for the
perpendicular diffusion coefficient:

a*v? 3 P..(k)
K = &Pk — . . (1)
3BO IC”k” +Klkl+v/)\.||

Here we used the wavevector k, the magnetic correlation tensor

Py (k) = (8B, (k) 8 B (k). @)
the parallel diffusion coefficient of the particle x|, the parallel
mean free path A = 3« /v, the mean magnetlc field By, and the
particle speed v. We also used the parameter a’®, which is related
to the probability that the particle is tied to a single magnetic
field line. Equation (1) was derived under the assumption that
0B, < By and that the turbulence is static.

! We want to emphasize that subdiffusive behavior is an aspect of pure
magnetostatic slab turbulence and for this specific model, NLGC theory does
not work. For a slab/2D composite model, however, diffusion should be
recovered. For two-dimensional (2D) turbulence, NLGC theory should be
valid. It is not our intention to criticize the slab/2D model or any other model
of magnetic turbulence.

2 The UNLT theory contains the correct FLRW limit and the Matthaeus et al.
(1995) theory. The NLGC theory does not contain this limit. However, it was
shown before (see, e.g., Minnie et al. 2009) that for 2D turbulence and certain
forms of the spectrum, the FLRW limit can be obtained.

SHALCHI & HUSSEIN

2.2. The UNLT Theory

Because the NLGC theory is problematic in some cases,
Shalchi (2010) derived the so-called UNLT theory. UNLT still
provides a nonlinear integral equation for the perpendicular
diffusion coefficient like the NLGC theory. However, it contains
different terms in the denominator,’

6121)2 3 Pxx (k)
KL= s . )
3BO F(k”,kl)+(4/3)KLkL+U/)\H
where we have used
(Quk;/3)? vik?
Flky k)= SO U “)

/3 k2 " Bk

The parameters used here are the same as in Equation (1). Al-
though the integral equation (Equation (3)) has some similarities
with Equation (1), the two theories provide different results in
the general case (see Tautz & Shalchi 2011).

3. NOISY REDUCED MAGNETOHYDRODYNAMIC
TURBULENCE

Ruffolo & Matthaeus (2013) proposed the NRMHD turbu-
lence model. All details can be found in the aforementioned
paper. In the following, we discuss some aspects of this model
and its relation to 2D turbulence.

3.1. The Correlation Tensor for NRMHD Turbulence

In the following, we discuss the magnetic correlation tensor
(Equation (2)) for the NRMHD model. According to Ruffolo &
Matthaeus (2013), the two relevant components of the magnetic
correlation tensor have the form

) if |k <K
and
) if |k <K
Py k)= KkXA(ku{ ' ‘k” Sk ©

In the model described here, we used the (axisymmetric)
spectrum A(k ) and the parameter K which cuts off the spectrum
in the parallel direction. Compared to the tensor discussed in
Ruffolo & Matthaeus (2013), we have different prefactors in our
model because we use a different form of the Fourier transform.
As in Ruffolo & Matthaeus (2013) we only consider the special
case of axisymmetric turbulence where the spectrum depends
only on k. We want to emphasize that 6 B, = 0 in the model
considered here and therefore P,, = 0. Before we discuss the
spectrum A (k, ) we briefly think about the normalization. Since
we have to satisfy

8B> =8B} + 3B,
_ f CRPo(K) + Py ()]
_ / dky A Ky, ™
0

we can determine the constants in the spectrum A (k).

3 Equations (1) and (3) look very similar. However, the term (Equation (4)) in
UNLT theory is completely different from the corresponding term in NLGC
theory. Therefore, we expect that at least in certain limits, the two theories
provide very different solutions.
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3.2. The Spectrum A (k)

A key element in theories for particle transport and FLRW
is the turbulence spectrum. The large scales (corresponding
to small wavenumbers) of the spectrum control the field line
diffusion coefficients and perpendicular diffusion coefficients of
energetic particles (see, e.g., Shalchi & Kourakis 2007; Shalchi
& Weinhorst 2009; Minnie et al. 2009; Shalchi et al. 2010). In
the following, we use exactly the spectrum proposed by Ruffolo
& Matthaeus (2013), which has the form

Ag
(14 ko123

Here we used the characteristic length scale /; which denotes
the turnover from the energy range of the spectrum to the
inertial range. Therefore, the latter scale is also known as the
bendover scale. Usually this scale is directly proportional to
the integral scale of the turbulence (see, e.g., Shalchi 2014).
By using the normalization condition (Equation (7)), we can
specify the parameter Ay:

Alky) = ®)

2 ~ ki
3B = Ao | dki; ©)
0

1+ (kyly )3
The latter integral can be solved (see, e.g., Gradshteyn & Ryzhik
2000), and it yields 9/8. Therefore, one can easily determine
the parameter A, and the spectrum (Equation (8)) becomes

1

[1+ (k1)) 10

8
Aky) = §11332
With Equation (5) we now know the xx-component of the
correlation tensor which enters Equations (1) and (3). Our
turbulence model is now complete and, in Section 4, we will
use it to compute the perpendicular diffusion coefficient.

3.3. Relation to the Two-dimensional Model

The NRMHD model can be seen as an extension/
generalization of the pure 2D model which was often used be-
fore in the literature (see, e.g., Fyfe & Montgomery 1976; Fyfe
et al. 1977). The pure 2D model is sometimes called the re-
duced MHD model (see, e.g., Strauss 1976; Montgomery 1982;
Higdon 1984). Some aspects of the corresponding spectrum
are discussed in Matthaeus et al. (2007) and Shalchi &
Weinhorst (2009).

In analytical treatments of turbulence, random walking mag-
netic field lines, and perpendicular transport of energetic par-
ticles, physical quantities are usually given as a wavenumber
integral. Let us assume that we have an analytical theory for the
quantity &, given as

s = [ % Pectho xtl k), an
Examples are the NLGC theory (Equation (1)), the UNLT theory
(Equation (3)), and the normalization condition (Equation (7)).

Now we evaluate the latter form using the NRMHD model
(Equation (5)). In this case, we find

1 +K e’}
fn(K) = 1o / dk, / dk. 1 AGOx Ky k). (12)
—K 0

Now we consider the limit

£ = lim £ (K) (13)
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Table 1
The Functions U (k) and V (k) for NLGC and UNLT Theories
Parameter NLGC Theory UNLT Theory
Uky) KLK2 + /A A/3) k3 +v/A
Vkyi) K| v/ Bie 1 k?)
and we obtain
l oo
e =3 [ KAGk =0k, ()
0
The pure 2D model is defined as
8(ky) K
Pex(k) = g0 (k) ——> -, (15)
ki k7

Using this model with the form (Equation (11)) we obtain

b = ﬂf dky &Pk )xky = 0, k). (16)
0

The latter form can be compared with Equation (14) to find the
correspondence

1
gP(ky) = EkiA(ku. (17)

Obviously the spectrum A(k ) is directly related to the spectrum
used in the pure 2D turbulence model g?P(k, ). By combining
the latter relation with the spectrum (Equation (10)), one can
easily show that this spectrum is a special case of the Shalchi &
Weinhorst (2009) model if we set s = 5/3 and ¢ = 3 therein.

4. COMPUTING THE PERPENDICULAR
DIFFUSION COEFFICIENT

In the following, we compute the perpendicular diffusion
coefficient based on the two theories discussed in Section 2.
Equations (1) and (3) have the form

_ a*v? 3 Py, (k)
~ 3B Uky)+V (ko) k'

K1 (18)

where the functions U (k) and V (k) are different for the two
considered theories. They are summarized in Table 1. With
Equation (5) this becomes

_ a’v? 1
LT 3Bz 2k

% tan (K /V/T

x/ dk 16 A ) EVVIU) g,

0 JUV

Here we kept the spectrum A (k ) in the equation for the
perpendicular diffusion coefficient. Later we will replace it by
the form (Equation (10)). One can very easily consider the
limit K — 0 and by using arctan(x) & x, one can derive
the corresponding integral equation for 2D turbulence from
Equation (19).
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Figure 1. Field line diffusion coefficient for NRMHD turbulence. Shown is
kpL/ 1L vs. the magnetic field ratio § B/ By for K = KI, = 1. The solid line
represents the analytical result obtained by solving Equation (23) numerically
and the dots represent the simulations (see Section 5 for details). We want to
emphasize that the solid line is in agreement with the result obtained by Ruffolo
& Matthaeus (2013).

4.1. The FLRW Limit from UNLT Theory

One strength of the UNLT theory is that the correct FLRW
limit can be derived from it. We demonstrate this for the
turbulence model considered here. We can obtain the FLRW
limit by suppressing parallel diffusion and by forcing the particle
to follow magnetic field lines. This means that we have to set
a’* = 1 and v/A; = 0 in Equation (19) and in the functions U
and V listed in Table 1. Therefore, we have U = (4/3)k Lki
and, thus, /U V = 2v/3 and /V/U = v/(2k k% ). With these
relations, Equation (19) becomes

v *© 3 vK
KL dk, k7 A (ky)arctan 5 - (20)
ZKJ_kL

T 4kB? )y

The latter equation has the solution

v
K1 = EKFL, 2D
or, in terms of mean free paths,
3
AL = T (22)

with the field line diffusion coefficient

! /Oodk k3 A (k) arct < K ) (23)
K = — 5 arcan|{ ——= ) .
L ZKB(% 0 L + KFLki

Equations (21) and (22) correspond to the FLRW limit and
Equation (23) agrees perfectly with Equation (25) of Ruffolo
& Matthaeus (2013). We want to emphasize that Equation (23)
was derived from Equation (3), representing the UNLT theory by
setting a> = 1 and v/A; = O therein. In Ruffolo & Matthaeus
(2013), the same result was obtained by employing the field
line diffusion theory of Matthaeus et al. (1995). As shown here
the UNLT theory of Shalchi (2010) allows the perpendicular
diffusion of energetic particles as well as the diffusion of
magnetic field lines to be described. In Figure 1, we show
the numerical solution of Equation (23). In the latter figure
we also show simulations of FLRW confirming the validity of
Equation (23). More details about this numerical work can be
found in Section 5.
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4.2. The Limit K — 0

The UNLT theory represented by Equation (3) is a special
case of the form (Equation (11)) with &, = k,, =k, and
av? 1

33(% F(k“, ki)+ (4/3)KL/€JZ_ + U/)\.H ’

Xy, ko) = (24)

with the function F'(ky, k; ) defined in Equation (4). According
to Equation (16) this becomes, in the limit K — 0,

2,2 o) 2D
KL=Z—”/ dk, — & kD
3B b

L @3k +u/A
corresponding to Equation (4) of Shalchi (2013b). The spectrum
gZD(k 1) is related to A(k,) via Equation (17) of the present
paper. Therefore, in the limit K — 0, we expect to find the
results derived earlier for 2D turbulence. We want to emphasize
that strictly pure 2D turbulence should be considered to be a
singular case and that diffusion theories such as NLGC and
UNLT theories are no longer valid for that specific model of
turbulence.

(25)

4.3. Perpendicular Diffusion for the General Case

Here we return to the general form (Equation (19)) with the
functions U (k) and V (k) from Table 1. Equation (19) has to be
evaluated numerically. Therefore, we introduce new quantities
which are more appropriate for numerical treatments of the
transport. In the following we use

K=1,K,
S=KV/U,
Q:%JU% (26)

and instead of using the spatial diffusion coefficient we use the
mean free paths defined as Ay = 3« /v and A; = 3« /v. By
using the latter parameters, Equation (19) becomes

)\J_ a2 /00 3
— = — dk) k1A (kL)
Lok T

arctan [S(k, )]
Q(ky)
where the parameters/functions S and Q can be found below.

To proceed we employ the spectrum (Equation (10)) and we use
the integral transformation x =/, k, to obtain

, 27)

AL 4a? 5B2 /00 x¥  arctan [S(x)] (28)
0

Lok B o T UrE T 0k

The two functions S(x) and Q(x) are different for the NLGC
and UNLT theories. For the NLGC theory we have to use

R () [ (Bree)
SN(X)_K\/<3IL)/<3IJ_X +)LII 29)

(Al Yy A
QN(X)_\/ (mx Uu) 30, 30)

For the UNLT theory, however, we have

_g (1 o, L
SU(X)_K\/(MXZ)/(WLX +?~||> Gb

and
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Figure 2. Perpendicular mean free path vs. the parallel mean free path for the
NRMHD model. We compare the NLGC theory (dashed line) with the UNLT
theory (solid line), and the field line random walk limit (dotted line). Here we
set K = 1 and SBZ/BS = 1. The dots represent the test-particle simulations
discussed in Section 5. The two analytical theories were evaluated for two
different values of the parameter a.

and

(32)

In the following, we compute the perpendicular mean free path
versus the parallel mean free path for different values of the
parameters a2, §B2/BZ, and K. The values used are listed in
the caption of the corresponding figure. By specifying these
parameters we can solve Equation (28) for the NLGC theory
and the UNLT theory numerically.

In Figure 2, we compute the perpendicular mean free path
versus the parallel mean free path for two different values of
the parameter a® and K = 1and §B?/ Bg = 1. Also shown are
the test-particle simulations which are discussed in Section 5.
We can easily see that for NRMHD turbulence, there are two
regimes. In the regime A < [, the perpendicular mean free
path increases linearly with the parallel mean free path. In this
regime, the NLGC and UNLT theories provide very similar
results. We will discuss below that this similarity cannot be
found in the general case. As soon as the parallel mean free path
becomes longer than the bendover scale [/, , the two theories
provide very different results. Whereas the perpendicular mean
free path obtained from NLGC theory decreases with increasing
Ay, the UNLT provides a perpendicular mean free path which
becomes constant. In the case A >> [ , the results obtained from
UNLT theory are very close to the FLRW limit A} = 3xp/2.
In Appendix A we consider the limit Aj — oo in the NLGC

theory. We show there that in this limit we find A, ~ A[l/ 3, in

disagreement with the UNLT theory and simulations.*

In Figures 3 and 4, we study the influence of the two param-
eters 8B/ By and K on the perpendicular diffusion coefficient.
For small K — 0 the perpendicular mean free path approaches
the result one would obtain for 2D turbulence whereas for larger
values of K the perpendicular mean free path is getting shorter.

4 We want to point out that we indeed find the exponent —1/3 for the
dependence on the parallel mean free path. In Shalchi et al. (2004), for

instance, A | ~ )\‘Tl/ 3 was derived, which is different from the result derived in

the present paper. The exponent +1/3 was derived for pure 2D turbulence and
a very specific spectrum. Therefore, this result has nothing to do with the
exponent we derived in the current paper.
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Figure 3. Perpendicular mean free path vs. the parallel mean free path for the
NRMHD model. We compare the NLGC theory (dashed line) with the UNLT
theory (solid line), and the field line random walk limit (dotted line). We compute
21 for K = Ki; = 10,1,0.1. Here we set > = 1 and §B2/B} = 1.
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Figure 4. Perpendicular mean free path vs. the parallel mean free path for the
NRMHD model. We compare the NLGC theory (dashed line) with the UNLT
theory (solid line), and the field line random walk limit (dotted line). We compute
A for SBZ/Bg =0.1, 1, 10. Here we set a®> = 1 and K=1.

For such large values of K, Figure 3 also shows a further discrep-
ancy between NLGC and UNLT theories. For K = 10 the two
theories disagree with each other even if the parallel mean free
path is very short. NLGC theories predict that the ratio A | /A

does not depend on the parameter K (see Appendix A) whereas
UNLT theory clearly states a dependence on this parameter.
This discrepancy is a subject for future work and therewith an-
alytical solutions of the UNLT integral equation for NRMHD
turbulence. From Figure 4, one can see that the perpendicular
mean free path depends sensitively on the magnetic field ratio
8B/ By. For weak turbulence amplitudes such as § B>/ B2 = 0.1,
we find again a discrepancy between NLGC and UNLT theories.
Obviously, these two theories provide different results for most
turbulence and particle parameters.

We want to emphasize that all our results were obtained
for a specific spectrum, namely, the model spectrum given by
Equation (10), which is the spectrum proposed by Ruffolo &
Matthaeus (2013). For a different spectrum (e.g., a different
spectral index in the energy range, a spectrum with cut-off at
small wavenumbers) one could obtain different results and the
differences between NLGC and UNLT theories could be smaller
or larger in such cases.
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Table 2
Simulated Field Line Diffusion Coefficient for the NRMHD
Model Versus the Ratio § B/ By

8B/By 0.01 0.05 0.1 05 1.0 2.0 5.0 10.0 20.0 50.0 100.0
kpL/lL 8.0 x 1073 0.0021 0.0065 0.1 0.3 0.7 2.4 6.0 13.0 30.0 60.0

Note. For all simulation runs we set K = 1.0.

Table 3
Simulated Mean Free Paths Along and Across the Mean Magnetic Field
Versus the Dimensionless Magnetic Rigidity Ry, /11

Rr/lp 0001 0.01 0.05 0.1 1.0 50 100 16.0 20.0

A/l 055 1.05 2.1 32 31 700 1875 4700 1.1 x 10*
Ap/ly 0.03 0.04 0.063 0.088 0.195 025 0.25 025 0.25

Note. Here we have used K = 1.0 and 882/33 =1.0.

5. SIMULATIONS

A powerful tool in order to test analytical theories such
as NLGC or UNLT theories are test-particle simulations. In
the current section, we use an extension of the code used
in Hussein & Shalchi (2014). In the following, we discuss
some technical details of that code, the results obtained for the
field line diffusion coefficient, and the simulated parallel and
perpendicular diffusion coefficients.

5.1. The Test-particle Code

Test-particle simulations have been performed before. In
Hussein & Shalchi (2014), for instance, we used a code to
simulate the interaction between energetic particles and different
turbulence models. These models were the slab model, the
isotropic model, and a composition of slab and 2D models. In
all these models only one independent wavevector component
controls the turbulent magnetic field. The NRMHD model
considered here is more complicated because two components
are relevant, namely kj and k ;. Therefore, one has to evaluate an
extra sum numerically, making the simulations much more time-
consuming. We describe the technical details of our numerical
tool in Appendix B and focus on the results in the main part of
this paper.

5.2. The Field Line Diffusion Coefficient

By solving the field line equation dx = dzéB, /By numer-
ically, one can obtain the field line diffusion coefficient for
different parameter values. Here we set K = 1and compute the
field line diffusion coefficient for different values of the mag-
netic field ratio § B/ By. The results are listed in Table 2 and they
are compared with the analytical results in Figure 1. As shown
in the latter figure, the agreement between analytical theory and
simulations is very good, confirming the nonlinear theory for
field line diffusion developed by Matthaeus et al. (1995) and the
UNLT theory of Shalchi (2010). Our simulations for random
walking magnetic field lines agree well with the simulations
presented in Snodin et al. (2013).

5.3. The Particle Diffusion Coefficients

In the current paragraph, we use the code described above
to compute the parallel and perpendicular mean free paths. For
these simulations we set K = 1 and § B/ By = 1. Our results are
listed in Table 3 and they are visualized in Figure 2. It is shown
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Figure 5. Perpendicular mean free path vs. the parallel mean free path for the
NRMHD model. We compare the NLGC theory (dashed line) with the UNLT
theory (solid line), and the field line random walk limit (dotted line). Here we
set K = 1 and BBZ/Bg = 0.1. The dots represent the simulations.
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Figure 6. Perpendicular mean free path vs. the parallel mean free path for the
NRMHD model. We compare the NLGC theory (dashed line) with the UNLT
theory (solid line), and the field line random walk limit (dotted line). Here we
set K = 10 and BBZ/Bg = 1.0. The dots represent the simulations.

Table 4
Simulated Mean Free Paths Along and Across the Mean Magnetic Field
Versus the Dimensionless Magnetic Rigidity Ry, /11

Rp/lp 0.005 0.01 005 0.1 1.0 50 100 200 250

A/l 045 064 13 1.8 6.6 135 550 2480 4200
Ap/lL 0.029 0.036 0.045 0.051 0.068 0.083 0.085 0.085 0.085

Note. Here we have used K = 10 and SBZ/Bg =1.0.

that the numerical perpendicular mean free path agrees well with
the NLGC and UNLT theories for the case of small parallel mean
free paths. For long parallel mean free paths, however, only
the UNLT theory agrees with the simulations. The decreasing
perpendicular mean free path for larger values of A provided
by the NLGC theory cannot be seen in the simulations. The
prediction of the UNLT theory that the perpendicular mean free
path approaches asymptotically the FLRW limit, in contrast, can
also be seen in the numerical work. Therefore, the UNLT theory
is confirmed once again.

In Figures 5 and 6, we repeat the simulations for K = 1,
832/32 =0.1and K = 10, 8B2/B2 = 1.0, respectively. The
results are listed in Tables 4 and 5. Qualitatively, the results
are very similar compared to the previous run. We can see that
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Table 5
Simulated Mean Free Paths Along and Across the Mean Magnetic Field Versus the Dimensionless Magnetic Rigidity Ry, /1
Rp/ti 0.005  0.01 0.05 0.1 1.0 2.0 3.0 5.0 10.0 20.0 25.0 30.0
an 8.7 12 23 37 170 330 540 950 3100 6300 8750 10*
Y 0.017 0.02 0025 003 004 0041 0042 0043 0045 0045 0045 0.045

Note. Here we have used K = 1.0 and 832/33 =0.1.

now even for small values of A, the NLGC and UNLT theories
disagree with each other. The simulations clearly support the
UNLT theory. It seems, however, that the parameter a? depends
on the values of K and 5 B / Bg. More investigations concerning
the value of a® have to be done in the future.

6. SUMMARY AND CONCLUSION

In Ruffolo & Matthaeus (2013) the model of NRMHD
turbulence was proposed and used to compute the diffusion
coefficient of random walking magnetic field lines based on the
nonlinear diffusion theory of Matthaeus et al. (1995). In this
paper, we investigated the perpendicular diffusion of energetic
particles by using two analytical theories, namely, the NLGC
theory of Matthaeus et al. (2003) and the UNLT theory of Shalchi
(2010). Furthermore, we performed test-particle simulations to
obtain field line diffusion and particle transport coefficients. We
obtained the following result.

1. We showed that the FLRW limit with the correct field line
diffusion coefficient can be obtained from the UNLT theory
in the appropriate limit. For the case of NRMHD turbu-
lence the field line diffusion coefficient already obtained by
Ruffolo & Matthaeus (2013) is derived from UNLT the-
ory. Our test-particle simulations confirm these previous
results and therewith our current understanding of field line
diffusion (see Figure 1).

2. We obtained for the first time the perpendicular diffusion
coefficient of energetic particles for NRMHD turbulence.
We showed how the two parameters K = Kl, and 8B /By
influence the perpendicular mean free path. The UNLT
and NLGC theories provide very different results for the
turbulence model considered here (see Figures 2, 5, and 6
of the current paper). According to the UNLT theory the
perpendicular mean free path increases linearly with the
parallel mean free path A and in the limit of large A it
becomes independent of the latter parameter. This behavior
was already found for other turbulence models and agrees
with the universality of the transport discussed in detail in
Shalchi (2014).

3. We tested the validity of the NLGC and UNLT theories by
comparing them with test-particle simulations. As shown
in Figures 2, 5, and 6, only the UNLT theory agrees
with the simulations for NRMHD turbulence. The scaling

AL o~ k[l/ 3 predicted by the NLGC theory for long
parallel mean free paths cannot be seen in the simulations.
Furthermore, we also find that for a short parallel mean free

path, the NLGC theory predicts that the ratio A /A does

not depend on the parameter K whereas UNLT shows a
clear dependence.

The UNLT theory originally developed by Shalchi (2010)
can correctly describe field line diffusion and perpendicular
transport of energetic particles in NRMHD turbulence. This
work, therefore, also complements previous work that has shown

that the UNLT theory can accurately describe transport in two-
component turbulence and Goldreich—Sridhar turbulence (see,
e.g., Tautz & Shalchi 2011; Shalchi 2013a). It will be subject
of future work to derive analytical forms for the perpendicu-
lar diffusion coefficient in NRMHD turbulence based on the
UNLT theory.

M.H. and A.S. acknowledge support by the Natural Sciences
and Engineering Research Council (NSERC) of Canada and
national computational facility provided by WestGrid. We are
also grateful to S. Safi-Harb for providing her CFI-funded
computational facilities for code tests and for some of the
simulation runs presented here.

APPENDIX A

ASYMPTOTIC LIMITS DERIVED FROM THE NLGC
INTEGRAL EQUATION

Here we explore the asymptotic limits one can obtain from
the NLGC theory. A more detailed discussion of such limits and
the corresponding limits obtained from the UNLT theory can be
found in the main part of the text.

A.l. The Limit .y — 0

Here we consider the (formal) limit Ay — 0 in the NLGC
integral equation. In this limit Equations (29) and (30) provide

K

S(x) — — 0,
V3l
o) —» —, (A1)
V3
and, therefore,
arctan (S§) — S. (A2)
With the latter three limits, Equation (28) becomes
A 40> §BX KXy [ 3
_i:i_2_”/ de — > (A3)
L 9K Bj 1L Jo (1 +x2)773

The x-integral can be solved by (see, e.g., Gradshteyn & Ryzhik

2000)
00 x3 9
/0 TS U (A9
Therewith Equation (A3) becomes
AL a*8B?
N 2B (A9
Il 0

which was derived before for 2D turbulence (see, e.g., Shalchi
et al. 2004).
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A.2. The Limit Aj — o0

Here we investigate the limit Aj — oo in the NLGC integral
equation. In this limit Equations (29) and (30) provide

S(x) > — | — — 00,
X )‘-L
VAIAL
o(x) > ——x, (A6)
RN
and, therefore,
arctan (S) — /2. (A7)

With the latter three limits, Equation (28) becomes

AL 2ma*8B® I, "Od x2

—_— = T X —==.

I 3K Bg \/)‘H)U- 0 (1+x2)7/3
The x-integral can be solved by (see, e.g., Gradshteyn & Ryzhik
2000)

/ o0 x2 _ V7T (5/6)
0 (1+x2)7/3

T 4 173

where we used the gamma function 1'(z). Therewith Equa-
tion (A8) becomes

(A8)

(A9)

a7’ T(5/6)8B2 Iy

o= _ . (A10)
L~ 6K T(/3) Bl Jihs
The latter equations can easily be solved by
o [nmaz r'(5/6) SBT“ (u)l“ (A11)
Lo L ek Ta Bl \n)

A more detailed discussion of the latter formula can be found
in Section 4.3.

APPENDIX B

TECHNICAL DETAILS OF THE TEST-PARTICLE
SIMULATIONS

In order to calculate the turbulent magnetic field at the position
of the charged particle, one can use the Fourier representation

S§B(x) = fd3k SB(k)e'*~. (B1)

In numerical treatments of test-particle transport, the three-
dimensional wavenumber integral has to be replaced by sums.
In turbulence models with reduced dimensionality, such as slab
or 2D models, and for isotropic turbulence, this integral can be
replaced by a single sum. For the NRMHD model considered in
the present paper, however, we have to use two sums. Therefore,
the turbulent magnetic field at the particle position is given by

N Ny

SB(x,y,2) =Re )y Amp(k, kn) &,

m=1 n=1

x exp [i(kny,, + kmzm + Bn)].  (B2)

Here we used the polarization vector

R —sin ¢,
En = ( Cos ¢n ) , (B3)
0

SHALCHI & HUSSEIN

where we ensured that § B, = 0. The coordinates x,, and y;
are obtained from a 2D rotational matrix whose azimuthal
angles, ¢,, are randomly generated for each summand n due
to symmetry reasons:

x,\ _ [(—sing, cos¢y,) (x
() =( &) 6)- @
In Equation (B2), Amp(k,, k,,) = Amp(k,, k) represents the
wave amplitude associated with mode n and m. Moreover, k,
and k,, stands for the wavenumbers in the perpendicular and
parallel directions, respectively. 8, is just a random plane wave
phase. Basically, the NRMHD model is a broadened 2D model,
where the parallel component is added to the pure perpendicular
component. Therefore, the model explained above is the same
as used in Hussein & Shalchi (2014) by setting 6, = «,, = 7 /2
and adding the parallel contribution separately.
The wave amplitude Amp(k,,, k,,) introduced above reads

G (kn)Akyy Ak,

Amp?(ky, k) = (B5)
T Y Gk Ak, AR,
and the spectrum G (k,) is defined as
k1 )?
Gll) = ——nlt) (B6)

[1+ (knl L )?]+0/2

As in analytical treatments, we used the energy range spectral
index ¢ and inertial spectral index s, respectively. For these
two parameters we use ¢ = 3 and s = 5/3 as explained
in the main part of the paper. Ak,, and Ak, are the spacings
between wavenumbers, where a logarithmic spacing in k,, and
k, is implemented so that Ak, / k,, and Ak, /k, are constant via
the relation

Aky
k,

exp [—ln(k"’maX/k"’mm)] (same in m). (B7)
N, —1
We should note here that &, m.x = K.

The trajectories of 1000 particles were traced to yield the
corresponding diffusion coefficients for each simulation run. For
the number of modes summed over in parallel and perpendicular
directions, the parallel wavenumbers need to be distributed
finely enough so that the resonance condition Ry k; =~ 1 is
satisfied. Here we have used the unperturbed Larmour radius R; .
The way we constructed the NRMHD model in our simulations
is so that we started with a 2D turbulence geometry first,
which only contains perpendicular wavenumbers extending
theoretically until infinity. Then we broadened this model by
a parallel portion which has a cut-off value at K. Taking all
of that into account and to keep computational time relatively
reasonable, we used N,, = 256 and N,, = 32 for our numerical
calculations. It is worth noting that we performed test runs with
N, up to 128 and no significant differences were noticed. The
size of the box was restricted by the so-called scaling condition,
which ensures that no particle travels beyond the maximum
size of the system, Ly, = k. This is ensured via the
relation Qt.xkmin Ry < 1, which corresponds to vfnax < Lmax-
In both parallel and perpendicular directions, ki, = 1072,
corresponding to a relatively huge box where particles are
trapped. Therefore, we ensured that finite box-size effects do
not occur. This corresponds to a spectrum without cut-off in
analytical treatments of the transport.
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