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ABSTRACT

We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In
previous work such simulations have been performed by using either magnetostatic turbulence or undamped
propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical
turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random
sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings
with solar wind observations. We show that good agreement can be found between simulations and the Palmer
consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is
δB/B0=0.5.
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1. INTRODUCTION

A fundamental problem in space science is the motion of
energetic particles such as solar energetic particles or cosmic
rays through the solar system. Similar transport phenomena
occur in fusion plasmas and different astrophysical scenarios
such as the interstellar space (see, e.g., Schlickeiser 2002;
Spatschek 2008; Shalchi 2009 for reviews). Various analytical
theories for describing the transport were developed in the past.
The first and also simplest approach is provided by quasilinear
theory (see Jokipii 1966). In his pioneering work, Palmer
(1982) compared quasilinear diffusion coefficients with
observational data. The data he considered can be represented
by a band or box known as a Palmer consensus range (see,
e.g., Figure 2 of the current paper). Palmer (1982) concluded
that there is no agreement, and thus our understanding of the
particle motion was incomplete.

Bieber et al. (1994) extended the standard quasilinear
approach by modifying the used turbulence model. They
suggested using a so-called two-component model rather than
the pure slab model employed before. Furthermore, they
modified the used spectrum by incorporating dissipation
effects. Most importantly, however, they replaced the magne-
tostatic model with a dynamical turbulence model. The
quasilinear calculations performed by Bieber et al. (1994)
agreed well with the aforementioned Palmer consensus range.

Before Bieber et al. (1994) published their pioneering paper,
it was already clear that quasilinear theory itself can be
problematic. Jones et al. (1973), Völk (1973), as well as
Goldstein (1976) pointed out that quasilinear theory cannot
describe pitch-angle scattering at large pitch-angles correctly.
Later it was shown that there are more issues with this theory.
Shalchi et al. (2004) have argued that the quasilinear parallel
mean free path does not agree with test-particle simulations as
soon as the slab model is replaced by a two-component model.
Shalchi (2015) has shown that quasilinear theory only works
for perpendicular diffusion if the Kubo number is small and if
pitch-angle scattering is suppressed. The role of the Kubo
number in classifying the transport regimes in space plasmas
was also considered in the work of Zimbardo et al.
(2004, 2012).

Since quasilinear theory is questionable, one has to revisit
the problem of particle transport in the solar system. In Tautz &

Shalchi (2013) detailed simulations have been performed by
employing a turbulence model that is very similar to the one
used before by Bieber et al. (1994). A major difference,
however, is that Tautz & Shalchi (2013) employed a plasma
wave propagation model rather than the dynamical turbulence
approach used by Bieber et al. (1994).
The purpose of the this article is to perform for the first time

test-particle simulations in full dynamical turbulence. We use
exactly the model suggested by Bieber et al. (1994), meaning
that we use the same analytical form for the spectrum,
turbulence geometry, and dynamical correlation function. Of
course our numerical approach is not based on the questionable
quasilinear approach used before. We compare our numerically
obtained parallel mean free paths l with the Palmer consensus
range representing the different solar wind observations.
From our test-particle simulations we can also obtain the

perpendicular mean free path l̂ and the ratio of the two mean
free paths l l^ . Our findings are compared with the
corresponding Palmer consensus range, Jovian electrons (see
Chenette et al. 1977), and Ulysses measurements of Galactic
protons (see Burger et al. 2000). This type of comparison was
performed before in the context of analytical theories for
perpendicular diffusion (see, e.g., Bieber et al. 2004 and
Shalchi et al. 2006) where good agreement was found. In the
current paper, however, we compare computer simulations
directly with the aforementioned solar wind observations.
The remainder of the paper is organized as follows. In

Section 2 we explain the physics of turbulence by focusing on
dynamical effects. The methodology that is used to perform
particle transport simulations in dynamical turbulence is
explained in Section 3. In Sections 4 and 5 we show our
findings for the two considered dynamical turbulence models
and we compare them with different solar wind observations.
In Section 6 we conclude and summarize.

2. DYNAMICAL TURBULENCE

Magnetic turbulence, in general, is described by the two-
point-two-time correlation tensor whose components are given
by

x x x xR t t B t B t, , , , , , 1mn m n0 0 0 0( ) ( ) ( ) ( )d d= á ñ
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where we have used the ensemble average operator ...á ñ. The
vectors x and x0 denote arbitrary positions in space. The times t
and t0 correspond to current and initial times, respectively. It is
usually convenient to describe magnetic turbulence in a Fourier
or wavenumber space. Thus we can use the tensor components

k k kP t B t B t, , , . 2mn m n 0( ) ( ) ( ) ( )*d d= á ñ

The latter components are linked to those of Equation (1) via a
Fourier transformation. A standard assumption in turbulence
and transport theory is that all tensor components obey the
same temporal behavior and thus,

k k kP t P t, , , 3mn mn( ) ( ) ( ) ( )= G

where we have used the static tensor components kPmn ( ) and
the so-called dynamical correlation function k t,( )G . Magnetic
turbulence is an essentially nonlinear phenomenon, so a simple
description in terms of linear waves is not appropriate. In other
words, the usual dispersion relation ω=ω (k) cannot be used,
thus a number of empirical models are employed in test-particle
simulations and analytical theories (see Bieber et al. 1994 and
Shalchi et al. 2006). Some of them are summarized in Table 1.
In analytical treatments of the transport, we directly use such
models. As described in Section 3, this is not the case in test-
particle simulations where a Fourier transformation has to be
employed for the dynamical correlation function. We define

k kdt t e,
1

, . 4i t

0
( ) ≔ ( ) ( )òc w

p
G w

¥
-R

We can solve this time integral easily for the different models
listed in Table 1. The corresponding analytical forms for the
function k,( )c w are also listed in the aforementioned table.
Using k,( )c w instead of k t,( )G means that we describe the
turbulence in a four-dimensional Fourier space with the
coordinates k and ω.

For the damping model of dynamical turbulence, which is
one of the two models used by Bieber et al. (1994), the
dynamical correlation function is an exponential (see Table 1 of
the current paper). The inverse correlation time γ entering the
exponential is, in this case, given by kvA∣ ∣g a= , where we
have used the wave vector k and the Alfvén speed vA. The
parameter α is a numerical factor, which, according to Bieber
et al. (1994), is a number between zero (static turbulence) and

one (strong dynamical turbulence). The same γ is used in the
random sweeping model where the dynamical correlation
function is a Gaussian (see again Table 1). In the general case,
however, the parameter γ can be more complicated (see, e.g.,
Shalchi et al. 2006).
Of course, one has to specify the static tensor components

kPmn ( ) as well. In the current paper we employ a so-called
slab/2D model, which is also known as two-component model
due to the fact that there are two different wave modes, namely
slab and two-dimensional (2D) modes. This type of turbulence
model is frequently used to approximate solar wind turbulence
and is supported by observations (see, e.g., Matthaeus et al.
1990; Osman & Horbury 2009a, 2009b; Turner et al. 2012),
turbulence simulations (see, e.g., Oughton et al. 1994; Mat-
thaeus et al. 1996; Shaikh & Zank 2007), and analytical
treatments of turbulence (see, e.g., Zank & Matthaeus 1993).
More details concerning the model used can be found in those
papers, or, in the context of test-particle simulations, in Hussein
et al. (2015).
In the following we briefly describe the most important

features of the static correlation tensor we used. In slab/2D
turbulence, the components of the static correlation tensor are
written as P P Pmn mn mn

slab 2D= + , where we have used the
components of the slab tensor defined as

kP g k
k

k
, 5lm lm

slab slab( ) ( )
( )

( )
d

d= ^

^


and the components of the 2D tensor defined as

kP g k
k

k

k k

k
. 6lm lm

l m2D 2D
2

( ) ( )
( )

( )
⎛
⎝⎜

⎞
⎠⎟

d
d= -^

^ ^



In Equations (5) and (6) we have used the two spectra g kslab ( )
and g k2D ( )^ , respectively. Furthermore, l, m=x, y and
Plm=0 if one of two indexes are equal to z. Obviously the
2D tensor (6) is designed so that δ Bz=0 which is in
agreement with the model proposed originally in Bieber et al.
(1994, 1996). The assumption δBz=0 is motivated by the fact
that in the solar wind the power in parallel fluctuations is
usually small in the inertial range (see Belcher & Davis 1971).
For the slab spectrum we use the model proposed by Bieber

et al. (1994)

g k
C s

l B

k l k k

k l k k k k

2
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where we have used the slab bendover scale lslab, the
dissipation wavenumber kd, the inertial range spectral index
s, and the dissipation-range spectral index p. Furthermore, we
have employed the normalization function

C s

s

s
2

2
1

2

, 8( ) ( )
⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
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=
G

G
-

with the Gamma function Γ (z).
For the 2D spectrum we employ an extension of the model

proposed by Bieber et al. (1994). By combining the spectrum

Table 1
Different Models for Dynamical Magnetic Turbulence

Dynamical Turbulence Model
Correlation Func-

tion k t,( )G
Fourier Representa-
tion k,( )c w

Magnetostatic Turbulence 1 δ (ω)
Undamped Plasma Waves ei tpw p( )d w w-
Damping Model of Dynamical

Turbulence
e tg- 1

2 2p
g

g w+
Random Sweeping Model e t2 2g-

e
1

2 3 2
22 2

( )
( )

p g
w g-

Nonlinear Anisotropic Dyna-
mical Turbulence

ei t tpw g- 1
2

p
2( )p

g
g w w+ -

Note. k t,( )G denotes the dynamical correlation function and k,( )c w is its
Fourier transform. The parameter ωp corresponds to the plasma wave frequency
and γ is a damping parameter. The latter parameter is explained in the main part
of the text.
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used in the latter paper with the ideas discussed in Matthaeus
et al. (2007) and Shalchi & Weinhorst (2009), we suggest using

g k
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The only parameter that is new compared to the slab spectrum
is the energy range spectral index q controlling the spectral
shape at large turbulence scales. Furthermore, we have used the
extended normalization function

D s q

s q
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In Table 2 we list the values we have used for the different
turbulence and particle parameters. Now our used turbulence
model is fully defined and in the next section we describe how
this model is incorporated into test-particle codes.

3. METHODOLOGY

In order to simulate the propagation of energetic particles
through a plasma, we have to perform different steps. The first
one is the creation of the turbulent magnetic fields based on a
specific turbulence model (e.g., the slab model or two-
component turbulence). Thereafter we need to solve numeri-
cally the Newton–Lorentz equation for an ensemble of particles
to obtain their orbits. The last step is the computation of
diffusion parameters by averaging the obtained particle orbits
in an appropriate way.

In order to calculate the turbulent magnetic field at the
position of the charged particle x, one can use the Fourier
representation

B x B kt d k t e, , . 11k xi3( ) ( ) ( )·òd d=

In numerical treatments of the transport, the wavenumber
integrals in Equation (11) have to be replaced by sums. In the
current paper we only simulate turbulence models with reduced

dimensionality and a superposition of such models. Therefore,
the wavenumber integral can be replaced by a single sum.
Since we are dealing with dynamical turbulence, the dynamical
correlation function is also replaced by the corresponding
Fourier representation as described in Section 2. Therefore,
compared to static simulations a second sum occurs in the
formula for the magnetic field creation. By following previous
work (see, e.g., Michałek & Ostrowski 1996; Giacalone &
Jokipii 1999; Tautz 2010; Hussein et al. 2015), in combination
with our dynamical turbulence approach, we can write the
turbulent magnetic field as

xB t B A k e, 2 , 12k x

m

M

n

N

m n m
i t

1 1

m n mn( ) ( ) ( )[ · ]å å xd d w= w b

= =

+ +

with the random phase βmn. For the slab modes and the 2D
modes we have used the same polarization vector x, namely

sin , cos , 0 , 13m m m( ) ( )x f f= -

where fm is a random angle.
All quantities used above are normalized with respect to the

slab bendover scale lslab. This means, for instance, that km in the
code represents the physical quantity k lslab or k lslab^ and z
stands for z lslab. The frequency ω is normalized with respect to
the unperturbed gyrofrequency of the particle Ω,
hence nw w= W.
In Equation (12) we have also used the wavevector

k k km m m
ˆ= with the random wave unit vector

k

1 cos

1 sin . 14m

m m

m m

m

2

2ˆ ( )

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟

h f

h f
h

=
-

-

As above, the angle fm is a random number. What the value of
ηm is depends on the simulated turbulence model. For slab
modes we have ηm=1 and for 2D modes ηm=0. In
Equation (12) we have also used the amplitude function

A k
G k k

G k k
,

,

,
. 15n m

m n m n
M N

2

1 1

( )
( )

( )
( )

å å
w

w w

w w
=

D D

D D
m n m n m n= =

The function G(kμ, ων) represents the spacetime spectrum for
which we use

G k G k k, , . 16m n m m n( ) ( ) ( ) ( )w c w=

The function χ (km, ωn) can be obtained from Table 1. In the
following we employ the damping model of dynamical
turbulence as well as the random sweeping model (see
Section 2 for more details). The function G(km) used here is
the usual spectrum, as used in simulations of magnetostatic
turbulence (see, e.g., Hussein et al. 2015). In the current paper
we use Equation (7) for the slab modes and Equation (9) for the
2D modes.
In the model used for k ,m n( )c w , one finds the Alfvén speed

vA. The latter parameter can be normalized with respect to the
particle speed v so that

v

v

v

c

R R

R
, 17A A 0

2 2

( )=
+

Table 2
The Parameter Values Used for Our Test-particle Simulations

Parameter Symbol Value

2D energy range spectral index q 2
Inertial range spectral index s 5/3
Dissipation range spectral index p 3
Alfvén speed vA 33.5 km s−1

Slab bendover scale lslab 0.030 AU
2D bendover scale l2D 0.030 AU
Dissipation wavenumber kd 3×105 1/AU
Mean field B0 4.12 nT
Slab fraction Bslab

2d B0.2 2d
2D fraction B2D

2d B0.8 2d

Note. The values should be appropriate in the interplanetary space at 1 AU
heliocentric distance.
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with the speed of light c and

R
l B

1 0.511MV for electrons
938MV for protons.

180
slab 0

{ ( )=

Here we have used the dimensionless rigidity defined via
R=RL/lslab, where RL=v/Ω is the unperturbed Larmor
radius and lslab is the slab bendover scale used above. For
lslab=0.03 AU and B0=4.12 nT this gives R0=9.2×10−5

for electrons and R0=0.169 for protons. All other parameter
values used for our simulations are summarized in Table 2.

In order to perform the simulations with high accuracy, one
has to take into account several conditions. In our simulations
of particle transport in dynamical turbulence we have to deal
with the same issues as in the simulations of static turbulence
(see again Hussein et al. 2015 for more details). However, there
are a few additional concerns when it comes to dynamical
turbulence. For instance, we have to deal with the minimal
value of the parameter nw (see below). Furthermore, we need a
certain number of grid points in space and time. For most of
our runs we have set N=M=256 in Equation (12). For lower
rigidities we had to set N=M=64 to avoid computation
times that were too long. In all our runs we have computed
running diffusion coefficients for times up to at least Ωt=104

(here Ω denotes again the gyrofrequency) to ensure that we are
in the stable regime.

While we have performed the simulations, we have realized
that the value of the minimum frequency, ωmin, has a strong
influence on both parallel and perpendicular mean free paths.
This influence was noticed for both protons and electrons but
was much stronger for electrons. To address this issue, we
performed a series of test simulations for electrons with
R 10 , 5 10 , 102 2 3[ ]Î ´- - - , with values of ωmin ranging from
10−20 to 10−2. We define the parameter ζ as the ratio of the
outcomel from simulations with a specific value of ωmin to the
final value from the same simulations with ωmin=10−20. The
results are shown in Figure 1. Small values of ωmin are required
in order to obtain the correct results from the simulations. This
issue is a consequence of the form of the resonance function
used here (see Table 1).

Following the ideas presented in Tautz (2010) we also
compute the errors of the different mean free paths. The author
noted that using the standard deviation as a mean of estimating
the error is inappropriate, as the mean square displacement
calculated in the Monte Carlo code is the variance of the
distribution function for the diffusion equation itself. In
addition, test particles interacting with turbulent magnetic
fields scatter in a random manner, leading to a huge variance in
their square deviation. Hence one has to come up with a
method that takes into account the averaging processes used
over the number of turbulence manifestations, NT, for each of
which a fixed number of test particles were simulated in space
and time, resulting in a diffusion coefficient. The mean error is
then defined to be the deviation of the different mean free paths
for a specific turbulence, λn, from the final averaged mean free
path, λf. Mathematically that reads as
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Using Equation (19), both the error in the parallel and
perpendicular mean free paths were calculated as lD  and
lD ^ respectively. To calculate the error in the ratio of the two

mean free paths, l l^ , we use the rule of error combination

. 20( )
⎛
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D
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
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In all plots shown in Sections 4 and 5 we have shown the error
bars based on the discussion presented here.

4. RESULTS FOR THE DAMPING MODEL OF
DYNAMICAL TURBULENCE

We started our investigations by employing the damping
model of dynamical turbulence. We have performed simula-
tions for three sets of parameters. First we have used pure slab
turbulence and set δB/B0=1.0. In the second run we replaced
the slab model with a 20%/80% slab/2D composite model but
we kept the magnetic field ratio the same. The assumed
contribution of the slab and 2D models is in agreement with the
work of Bieber et al. (1994, 1996). In the last set of our
simulations we still used the two-component model but the
magnetic field ratio was reduced to δB/B0=0.5, as suggested
by Ruffolo et al. (2012).

4.1. Slab Turbulence with δB/B0=1.0

In the first set of simulations we have employed the slab
model of magnetic turbulence in combination with the damping
model of dynamical turbulence. We have computed the parallel
and perpendicular diffusion coefficients versus time for
different rigidities.
For parallel transport we clearly obtained a diffusive

behavior for all considered cases. The obtained parallel mean
free path versus rigidity is visualized in Figure 2. The parallel
mean free paths we have obtained numerically agree with the
quasilinear results derived in Bieber et al. (1994). However, as
in this previous work, the parallel mean free paths are clearly
below the Palmer consensus range. Therefore, we agree with

Figure 1. The ratio ,finalz l l=   vs. the minimum frequency ωmin. The results
shown here were obtained for pure slab turbulence, the damping model of
dynamical turbulence, and electrons. The minimum frequency ωmin shown here
is normalized with respect to the unperturbed gyrofrequency of the particle Ω.
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the statement of Bieber et al. (1994) that a pure slab setup
cannot provide an appropriate approximation for solar wind
turbulence. Therefore, the slab model has to be replaced with a
more realistic model such as the two-component model. This is
done in Sections 4.2 and 4.3.

For perpendicular transport we observed subdiffusive
transport after the initial ballistic regime. The Unified Non-
linear Transport (UNLT) theory developed in Shalchi (2010)
can be used to compute the perpendicular diffusion coefficient
analytically for dynamical turbulence (see Shalchi 2014). The
latter theory predicts that in the limit t  ¥ perpendicular
diffusion is recovered but the corresponding perpendicular
mean free path is very small. The findings of the current paper
agree with such analytical predictions in the sense that all our
numerical results are larger than the analytical values.

4.2. Slab/2D Turbulence with δB/B0=1.0

Since theoretical results obtained by using either quasilinear
calculations (see Bieber et al. 1994) or numerical simulations
(see previous paragraph) do not agree with observations as long
as the slab model is used, we now employ the 20%/80%
composite model proposed by Bieber et al. (1994, 1996).

The parallel mean free path versus magnetic rigidity is
shown in Figure 3. Although the parallel mean free path is now
increased compared to the pure slab result, we are still far
below the Palmer consensus range. Whereas quasilinear
estimates provide a parallel mean free path that is a factor of
five larger compared to the slab result, this effect is much
smaller if simulations are used. The physical explanation for
that different behavior was presented in Shalchi et al. (2006).
For the two-component model used here, resonance broadening
due to perpendicular diffusion becomes important. This type of
nonlinear effect makes the parallel mean free path smaller
compared to the quasilinear result. Thus, we conclude that the
idea of replacing the slab model with a two-component model
helps to increase the parallel diffusion coefficient, but this
effect is not strong enough to achieve agreement with solar
wind observations.

For the perpendicular diffusion coefficient we found
diffusive behavior for all considered cases. The perpendicular

mean free path versus magnetic rigidity is visualized in
Figure 4 and the ratio of the two diffusion parameters l l^ 
versus rigidity is shown in Figure 5. The latter ratio is almost
constant for small rigidities and then decreases rapidly if the
rigidity is increased. According to Figure 4 the perpendicular
mean free path eventually becomes constant in the high rigidity
limit. This behavior of the perpendicular diffusion coefficient is
exactly what is predicted by the UNLT theory, as shown in
detail in Shalchi (2015).

4.3. Slab/2D Turbulence with δB/B0=0.5

As argued in the previous section, the parallel mean free
paths obtained from our simulations are still too small
compared to the observations. Those results, however, were
obtained for a magnetic field ratio of δB/B0=1.0. Ruffolo
et al. (2012) suggested that the latter ratio is δB/B0=0.5.
Furthermore, Tautz & Shalchi (2013) successfully used this
magnetic field ratio in their simulations of propagating plasma
waves. Thus, we employ the same value here and compute
parallel and perpendicular diffusion parameters again.

Figure 2. The parallel mean free path vs. magnetic rigidity for pure slab
turbulence, the damping model of dynamical turbulence, and δB/B0=1.0. The
shaded band represents the Palmer (1982) consensus range. The parallel mean
free path is shown in astronomical units (AU) and the rigidity is shown in
megavolts (MV).

Figure 3. The parallel mean free path vs. magnetic rigidity for two-component
turbulence, the damping model of dynamical turbulence, and δB/B0=1.0. The
shaded band represents the Palmer (1982) consensus range.

Figure 4. The perpendicular mean free path vs. magnetic rigidity for two-
component turbulence, the damping model of dynamical turbulence, and δB/
B0=1.0. For comparison we show observations of Jovian electrons (Chenette
et al. 1977, star), Ulysses measurements of Galactic protons (Burger et al. 2000,
dots), and the Palmer (1982) value (horizontal line).
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The parallel mean free path versus magnetic rigidity is
shown in Figure 6. We can now clearly see that the electron
parallel mean free path goes through the Palmer consensus
range. Thus we conclude that we can indeed reproduce the
solar wind observations by using our test-particle code.
However, besides using the two-component turbulence model,
we also have to reduce the magnetic field ratio to δB/B0=0.5.

The perpendicular mean free path and the ratio of the two
diffusion coefficients are shown in Figures 7 and 8,
respectively. Qualitatively, the perpendicular diffusion coeffi-
cient obeys the same behavior as above, only the magnitudes
are different. We compare our numerical findings with
observations of Jovian electrons (Chenette et al. 1977), Ulysses
measurements of Galactic protons (Burger et al. 2000), and the
Palmer (1982) value. Good agreement between the simulations
and observations is found.

5. RESULTS FOR THE RANDOM SWEEPING MODEL

In the current paragraph we replace the damping model of
dynamical turbulence used above with a random sweeping
model where the dynamical correlation function is a Gaussian
function (see Table 1). Motivated by the results obtained in
Section 4, we only run the simulations for two-component
turbulence and a magnetic field ratio of δB/B0=0.5.

The parallel mean free path versus magnetic rigidity is
shown in Figure 9. Again, the electron parallel mean free path
goes through the Palmer consensus range and we can
reproduce the solar wind observations by using our test-
particle code. By comparing Figures 6 and 9, it can be seen that
the results are very similar and the differences between the
damping model of dynamical turbulence and the random
sweeping model are minor.

The perpendicular mean free path and the ratio of the
two diffusion coefficients are shown in Figures 10 and 11,
respectively. By comparing those results with our
findings obtained for the damping model of dynamical
turbulence (see Figures 7 and 8), we conclude that there is
not a strong influence from the chosen dynamical turbulence
model.

Figure 5. The ratio of perpendicular and parallel mean free paths vs. magnetic
rigidity for two-component turbulence, the damping model of dynamical
turbulence, and δB/B0=1.0. The shaded band represents the Palmer (1982)
consensus range.

Figure 6. The parallel mean free path vs. magnetic rigidity for two-component
turbulence, the damping model of dynamical turbulence, and δB/B0=0.5. The
shaded band represents the Palmer (1982) consensus range.

Figure 7. The perpendicular mean free path vs. magnetic rigidity for two-
component turbulence, the damping model of dynamical turbulence, and δB/
B0=0.5. For comparison we show observations of Jovian electrons (Chenette
et al. 1977, star), Ulysses measurements of Galactic protons (Burger et al. 2000,
dots), and the Palmer (1982) value (horizontal line).

Figure 8. The ratio of perpendicular and parallel mean free paths vs. magnetic
rigidity for two-component turbulence, the damping model of dynamical
turbulence, and δB/B0=0.5. The shaded band represents the Palmer (1982)
consensus range.
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6. SUMMARY AND CONCLUSION

We have revisited the problem of particle transport in
interplanetary space. We have combined test-particle simula-
tions with the model for solar wind turbulence proposed by
Bieber et al. (1994). The latter model contains the following
key features:

1. The spectrum has energy, inertial, and dissipation range
and allows us to modify the spectral shape by changing
the corresponding indexes q, s, and p;

2. The used magnetic correlation tensor contains two
contributions or wave modes, namely slab and 2D
modes; and

3. The turbulence is assumed to be dynamical and we have
employed two different models for the dynamical
correlations function, namely the damping model of
dynamical turbulence and the random sweeping model.

Whereas the used turbulence model is exactly the one
described and used in Bieber et al. (1994), our approach to
compute particle diffusion parameters is very different. Bieber
et al. performed quasilinear calculations, whereas our work is
entirely based on computer simulations. Similar simulations
have been used before by considering static turbulence (see,
e.g., Giacalone & Jokipii 1999; Qin et al. 2002a, 2002b) or
undamped propagating plasma waves (see, e.g., Michałek &
Ostrowski 1996; Tautz & Shalchi 2013). For the first time we
have performed test-particle simulations for dynamical turbu-
lence by employing a more-dimensional Fourier transformation
approach, as described in Section 3.
In Figures 2–8 we have shown our numerical findings that

were obtained by using the damping model of dynamical
turbulence, and compared them with the Palmer (1982)
consensus range representing the different solar wind observa-
tions. As already concluded by Bieber et al. (1994), we are not
able to reproduce the consensus range by simply employing a
slab model. The use of a two-component turbulence model is
required but even then we are not able to find agreement with
the observations. This finding is a major difference between
previous work and our simulations. The idea of Bieber et al.
(1994) was that by replacing the slab model with a two-
component model, we could increase the parallel mean free
path drastically. This idea, however, works only in the
framework of quasilinear theory. The theory, however, is
incorrect due to nonlinear effects, as already pointed out in
Shalchi et al. (2004). The simulations are quasi-exact apart
from numerical inaccuracies. As shown in the current paper,
just replacing the slab model with a slab/2D model alone does
not lead to agreement with the observations. Despite the
aforementioned issue, we were still able to reproduce the
Palmer consensus range by assuming that the turbulent
magnetic field is a bit weaker compared to what was assumed
before. If we assume that δB/B0=0.5, as suggested by
Ruffolo et al. (2012), instead of the standard assumption δB/
B0=1.0, agreement between simulations and observations can
indeed be found.
We have repeated our simulations by using the random

sweeping model proposed by Bieber et al. (1994). We have
again employed the slab/2D model and assumed δB/B0=0.5
for the magnetic field ratio. The corresponding results for the
parallel mean free path, perpendicular mean free path, and the
ratio of the two latter parameters are visualized in Figures 9–11.
Our findings are similar to those obtained for the damping

Figure 9. The parallel mean free path vs. magnetic rigidity for two-component
turbulence, the random sweeping model, and δB/B0=0.5. The shaded band
represents the Palmer (1982) consensus range.

Figure 10. The perpendicular mean free path vs. magnetic rigidity for two-
component turbulence, the random sweeping model, and δB/B0=0.5. For
comparison we show observations of Jovian electrons (Chenette et al. 1977,
star), Ulysses measurements of Galactic protons (Burger et al. 2000, dots), and
the Palmer (1982) value (horizontal line).

Figure 11. The ratio of perpendicular and parallel mean free paths vs. magnetic
rigidity for two-component turbulence, the random sweeping model, and δB/
B0=0.5. The shaded band represents the Palmer (1982) consensus range.
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model of dynamical turbulence. Again the parallel mean free
paths agree very well with the Palmer consensus range.

For the perpendicular diffusion coefficient we found very
similar results for the damping model of dynamical turbulence
and the random sweeping model. The same applies for the ratio
l l^ . We have compared our numerical results with different
solar wind observations, namely observations of Jovian
electrons (Chenette et al. 1977), Ulysses measurements of
Galactic protons (Burger et al. 2000), and the Palmer (1982)
value. For two-component turbulence and a magnetic field ratio
of δB/B0=0.5 good agreement is found for the damping
model of dynamical turbulence as well as the random sweeping
model.

Reames (1999) argued that the parallel mean free path can be
of the order of 1–2 AU for low rigidity particles at a 1 AU
heliocentric distance. The largest value for the parallel mean
free path in this regime was obtained for the random sweeping
model (see Figure 9) where we found 0.25l » AU. Obviously
our numerical results are about a factor of four below the value
of Reames (1999). One could try to further reduce the magnetic
field ratio δB/B0 or to use a more realistic dynamical
turbulence model. This will be subject of future work.

We would also like to point out that there is some similarity
between our findings and the results found previously by Tautz
& Shalchi (2013). The latter authors, however, used undamped
propagating plasma waves, which corresponds to a different
turbulence setup. We conclude that propagating plasma waves
as well as dynamical turbulence allow for a reproduction of the
Palmer consensus range.

We also conclude that the Bieber et al. (1994) turbulence
model can indeed be seen as a valid model for particle
transport. However, this requires setting δB/B0=0.5, a value
which is a factor of two smaller compared to the value
originally used. Finally, we can state that with this magnetic
field ratio we can indeed reproduce solar wind observations by
using our test-particle code.

A.S. acknowledges support by the Natural Sciences and
Engineering Research Council (NSERC) of Canada. Most
simulations shown in this article were obtained by using the
national computational facility provided by WestGrid. We are
also grateful to S. Safi-Harb for providing her CFI-funded

computational facilities for code tests and for some of the
simulation runs presented here.
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