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ABSTRACT
We investigate the interaction of energetic particles with parallel propagating shear Alfvén
waves. We use analytical tools as well as test-particle simulations. The analytical derivation of
the parallel diffusion coefficient is done by employing quasi-linear theory, a well-known tool
in diffusion theory. The perpendicular diffusion coefficient, however, is derived by employing
the unifield non-linear transport theory. This is the first time we derive a simple analytical form
of the perpendicular mean free path based on the latter theory. We perform the simulations and
we show that quasi-linear theory works well for parallel diffusion in Alfvénic slab turbulence
as expected. We also show that the unified non-linear transport theory perfectly describes
perpendicular diffusion for the turbulence model used here.
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1 IN T RO D U C T I O N

The interaction of energetic particles with turbulence is a well-
known problem in space science and astrophysics (see, e.g. Schlick-
eiser 2002; Shalchi 2009, for reviews). In such scenarios, electrically
charged particles interact with large-scale magnetic fields such as
the solar magnetic field or the Galactic magnetic field and turbu-
lence. The latter interaction is complicated since turbulent fields
scatter the particles and makes their motion a diffusive one (we like
to point out that non-diffusive transport has been discussed more
recently in the literature – see Perrone et al. 2013 for a review).

If the transport of particles is investigated theoretically, one can
use two different tools, namely:

(i) Analytical theories such as quasi-linear theory (QLT; see,
e.g. Jokipii 1966) or non-linear diffusion theories (see, e.g. Shalchi
2010).

(ii) Test-particle simulations (see, e.g. Michałek & Ostrowski
1996; Qin, Matthaeus & Bieber 2002; Tautz 2010a,b; Hussein &
Shalchi 2014).

Both approaches have their advantages and disadvantages. In
analytical theories, for instance, one has to use approximations to
achieve analytical tractability. On the other hand, for applications
one needs analytical forms of the diffusion coefficients. Examples
for such applications are the acceleration of particles at interplane-
tary shocks (see Li et al. 2012; Wang, Qin & Zhang 2012) and solar
modulation studies (see Alania et al. 2013; Engelbrecht & Burger
2013; Manuel, Ferreira & Potgieter 2014; Potgieter et al. 2014).
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In both cases, analytical theory and numerical treatments of the
transport, one has to specify the properties of magnetic turbulence
which controls the motion of the energetic particles. One could say
that three properties of turbulence are relevant for the transport.
Those are:

(i) The geometry of the turbulence describing how the turbulent
magnetic fields depend on the wave vector orientations. Simple
examples for turbulence geometries are the slab model, the two-
dimensional model, and the isotropic model.

(ii) The turbulence spectrum describes how the magnetic fields
depend on the wavenumber or scale. Here, one usually employs
a model with simple power laws in the different regimes (energy
range, inertial range, dissipation range).

(iii) The temporal properties of the turbulence. In reality, one
expects to find propagating plasma waves which can be damped in
a certain way.

In general, all these properties can have an important influ-
ence on the energetic particles depending on the transport process
which is investigated (e.g. parallel diffusion, perpendicular diffu-
sion, stochastic acceleration) and the considered parameters (e.g.
particle energy). In the current paper, we focus on the relevance of
wave propagation effects on spatial diffusion of the charged par-
ticles. Our aim is to compute parallel and perpendicular diffusion
parameters analytically and numerically by using the aforemen-
tioned tools.

Alfvén waves (see Alfvén 1942) are a certain type of plasma
wave and they are regarded as a transient electro-hydro-magnetic
phenomena occurring within a magnetized plasma. Their frequen-
cies are well below the ion-cyclotron frequency (ω2 � ω2

c ) and
their propagating direction is parallel with respect to the large-scale
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magnetic field. More about this type of plasma wave can be found
in Chen (1984) and Schlickeiser (2002).

In this paper, we explore particle diffusion in Alfvénic slab turbu-
lence analytically and numerically. By doing this, we try to achieve
the following:

(i) We extend the so-called Unified Non-Linear Transport
(UNLT) theory originally derived in Shalchi (2010) to allow the
description of particles interacting with propagating plasma waves.
Furthermore, we will derive analytically the perpendicular diffusion
coefficient based on the aforementioned theory.

(ii) We perform detailed simulations to explore how the different
transport parameters depend on parameters such as the rigidity, the
magnetic field ratio δB/B0, and the Alfvén speed vA.

(iii) We compare the analytical results with the simulations to
investigate the accuracy and reliability of analytical tools such as
the UNLT theory.

The remainder of this paper is organized as follows. In Section 2,
we briefly discuss the model of parallel propagating shear Alfvén
waves. The corresponding quasi-linear parallel mean free path is
calculated in Section 3. In Section 4, we compute the perpendic-
ular diffusion coefficient analytically based on the UNLT theory.
Test-particle simulations are performed in Section 5 where we also
compare our numerical results with the analytical findings of the
previous sections. We end our paper with a short summary and some
conclusions in Section 6.

2 T H E M O D E L O F PA R A L L E L P RO PAG AT I N G
SHEAR A LFVÉ N WAV E S

A key input in analytical and numerical treatments of particle dif-
fusion is a model for the turbulent electric and magnetic fields.
The latter fields are described by so-called correlation tensors. The
magnetic correlation tensor, for instance, is defined as

Plm (k, t) = 〈
δBl (k, t) δB∗

m (k, 0)
〉
, (1)

where we have used the ensemble average operator 〈· · ·〉. Often
it is assumed that all tensor components have the same temporal
behaviour and, thus, one can write

Plm (k, t) = Plm (k) � (k, t) (2)

with the so-called dynamical correlation function � (k, t) and the
magnetostatic tensor Plm (k). A similar tensor can be defined for
electric fields (see, e.g. Schlickeiser 2002). To achieve a certain
simplification, we consider only pure magnetic turbulence and,
therefore, we only discuss and implement the magnetic correlation
tensor.

2.1 The slab model

In the current paper, we employ the so-called slab model in which
by definition the turbulent magnetic field depends only on the coor-
dinate along the mean magnetic field (in our case it is the z-axis).
In this special case, the static correlation tensor defined above has
the form

Plm (k) = g
(
k‖

) δ (k⊥)

k⊥
δlm with l, m = x, y, (3)

where we have used the Dirac delta δ(z), the Kronecker delta δlm,
and the one-dimensional spectrum of the slab modes g(k‖). Below,
we specify the latter spectrum. We also like to emphasize that tensor

components with l = z or m = z have to be zero due to the solenoidal
constraint.

2.2 Parallel propagating shear Alfvén waves

In order to obtain a complete model for the magnetic correlation
tensor, we also have to specify the dynamical correlation function.
In general, one could assume that (see, e.g. Schlickeiser 2002)

� (k, t) = e−iωt−γ t . (4)

The wavenumber-dependent function ω = ω(k) describes wave
propagation effects and the function γ describes damping effects
(e.g. plasma wave damping). More details concerning different
plasma waves and damping effects can be found in the literature
(see, e.g. Bieber et al. 1994; Schlickeiser 2002; Shalchi et al. 2006).
In this paper, we only consider undamped waves and, thus, we set
γ = 0. For the dispersion relation, we employ the model of parallel
propagating shear Alfvén waves where we have by definition

ω = jvAk‖ with j = ±1. (5)

In the latter equation, we have used again the Alfvén speed vA.
The parameter j is used to track the wave direction (j = +1 is
used for forward and j = −1 for backward to the ambient magnetic
field propagating Alfvén waves). A lot of studies have addressed the
direction of propagation of Alfvénic turbulence (see, e.g. Bavassano
2003). In general, one would expect that closer to the sun the most
waves should propagate forward and far away from the sun the wave
intensities should be equal for both directions.

2.3 Neglecting electric fields

In the current paper, we investigate particle diffusion in magnetic
turbulence. However, we take into account wave propagation effects
and, therefore, our turbulence model is dynamical. It is well known
due to Maxwell’s equations that time-dependent magnetic fields
automatically means that electric fields do exist as well (see, e.g.
Schlickeiser 2002). To include turbulent electric fields in analytical
work and test-particle simulations is difficult. Therefore, we neglect
electric fields throughout the whole paper. The importance of elec-
tric field for spatial diffusion depends on the parameter ε = vA/v.
If the latter parameter is small electric fields should be negligible
(see again Schlickeiser 2002) and our approach should be valid.
If ε 	 1, however, electric fields could be important and in this
parameter regime our results are eventually no longer valid. Since
we want to test theories such as QLT and the UNLT theory, we also
consider the case of large ε. Our analytical and numerical results
can be compared with each other because in both cases we neglect
electric fields. We like to emphasize, however, that our results for
ε 	 1 could be unphysical.

3 T H E QUA S I - L I N E A R PA R A L L E L M E A N
FREE PATH

A standard tool in diffusion theory is QLT originally developed
by Jokipii (1966). Although QLT is problematic in the general
case, it should work well for parallel diffusion in slab turbulence
(see, e.g. Shalchi 2009, for a review). In the current section, we
derive analytical expressions for the parallel mean free path. Such
calculations are based on the well-known quasi-linear approach
(see, e.g. Schlickeiser 2002 for a review).
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The parallel spatial diffusion coefficient κ‖ is given as an inte-
gral over the inverse pitch-angle Fokker–Planck coefficient Dμμ(μ)
(see, e.g. Earl 1974)

κ‖ = vλ‖
3

= v2

8

∫ +1

−1
dμ

(1 − μ2)2

Dμμ(μ)
. (6)

Here, we have used the pitch-angle cosine μ and the particle speed v.
Instead of the diffusion coefficient κ‖ one can compute the parallel
mean free path λ‖ = 3κ‖/v.

For slab turbulence the pitch-angle Fokker–Planck coefficient has
the form (see, e.g. Schlickeiser 2002)

Dμμ(μ) = π2
2(1 − μ2)

B2
0

∫ ∞

−∞
dk‖ g(k‖)

(
1 − μω

vk‖

)2

× [
δ
(
vμk‖ − ω + 


) + δ
(
vμk‖ − ω − 


)]
, (7)

where we have used the one-dimensional spectrum of the slab modes
g(k‖) and the unperturbed gyro-frequency 
. All other parameters
are explained above. By specifying the turbulence model, and by
combining equation (7) with (6) one can compute the parallel spatial
diffusion coefficient. This is done in the following.

3.1 A pure magnetic scenario

The term (μω)/(vk‖) in equation (7) comes due to electric fields
which are taken into account in Schlickeiser (2002). In the current
paper, we only simulate pure magnetic turbulence, and because of
consistency, we have to neglect this term here as well. For parallel
propagating shear Alfvén waves, we have to use equation (5) and
therewith equation (7) becomes

Dμμ(μ) = π2
2(1 − μ2)

B2
0

∫ ∞

−∞
dk‖ g(k‖)

× {
δ
[
(vμ − jvA) k‖ + 


] + δ
[
(vμ − jvA) k‖ − 


]}
.

(8)

Now we employ the relation δ(az) = δ(z)/|a| and perform the
wavenumber integral to get

Dμμ(μ) = π2
2(1 − μ2)

B2
0 |vμ − jvA|

×
[
g

(
k‖ = − 


vμ − jvA

)
+ g

(
k‖ = 


vμ − jvA

)]
.

(9)

Since model spectra are usually symmetric g(k‖) = g( − k‖), we
finally obtain

Dμμ(μ) = 2π2
2(1 − μ2)

B2
0 |vμ − jvA| g

(
k‖ = 


vμ − jvA

)
. (10)

In the following, we use the spectrum

gslab(k‖) = C(s)

2π
δB2

slablslab
1[

1 + (k‖lslab)2
]s/2 , (11)

where we have used

C(s) = �
(

s
2

)
2
√

π�
(

s−1
2

) . (12)

Furthermore, we have used the inertial range spectral index s, the
bendover scale lslab, and the total turbulent magnetic field strength
δBslab. This type of spectrum was originally introduced by Bieber
et al. (1994) and is frequently used in transport theory. Although

Shalchi & Weinhorst (2009) proposed a generalized spectrum, there
are some indications that the spectrum (11) is still appropriate for
slab turbulence (see Matthaeus et al. 2007).

By combining the spectrum (11) with equation (10) and by using
the parameters ε = vA/v and R = RL/lslab (here we have used the
unperturbed Larmor radius RL = v/
), the pitch-angle Fokker–
Planck coefficient becomes

Dμμ(μ) = πC(s)(1 − μ2)

2

v
lslab

δB2
slab

B2
0

× |μ − jε|s−1

[|μ − jε|2 + R−2
]s/2 . (13)

To simplify the latter formula, we consider two different limits.

3.2 The limit ε � 1

In the case considered here, equation (13) becomes

Dμμ(μ) = πC(s)(1 − μ2)
v

lslab
Rs−2 δB2

slab

B2
0

× |μ|s−1

[
(μR)2 + 1

]s/2 . (14)

The latter result corresponds to the well-known magnetostatic limit
(see, e.g. equation 3.37 in Shalchi 2009).

3.3 The limit ε � 1

If ε 	 1, we can approximate |μ − jε| ≈ ε. In this limit, equation
(13) becomes

Dμμ(μ) = πC(s)(1 − μ2)
v

lslab
Rs−2 δB2

slab

B2
0

× εs−1

[
(εR)2 + 1

]s/2 . (15)

We like to note that this limit is questionable because in this limit
different physical effects such as electric fields could be important
as described in Schlickeiser (2002).

3.4 The parallel mean free path for ε � 1

Now, we compute the parallel mean free path for the limit ε → 0.
In this case, we can use the magnetostatic limit derived before (see,
e.g. equation 3.39 of Shalchi 2009) which is given by

λ‖
lslab

= 3

8πC(s)

B2
0

δB2
slab

R2−s

×
[

2

2 − s
2F1

(
1 − s/2,−s/2; 2 − s/2; −R2

)

− 2

4 − s
2F1

(
1 − s/2, −s/2; 3 − s/2; −R2

)]
, (16)

where we have used the hypergeometric function 2F1(a, b; c; z).
The latter formula can be simplified by considering two limits.
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3.4.1 The limit R � 1

In this case, we can use equation 3.41 of Shalchi (2009) and the
parallel mean free path becomes

λ‖
lslab

= 3

2π(2 − s)(4 − s)C(s)

B2
0

δB2
slab

R2−s (17)

with the well-known behaviour λ‖ ∼ R2 − s.

3.4.2 The limit R 	 1

In this case, we can use equation 3.42 of Shalchi (2009) to obtain

λ‖
lslab

= 3

16πC(s)

B2
0

δB2
slab

R2 (18)

corresponding to the typical λ‖ ∼ R2 behaviour for high
rigidities R.

3.5 The parallel mean free path for ε � 1

In this limit, equation (15) has to be combined with formula (6) to
find

λ‖
lslab

= 1

2πC(s)

B2
0

δB2
slab

R2−sε1−s
[
(εR)2 + 1

]s/2
. (19)

Again, we can identify two different transport regimes.

3.5.1 The limit εR � 1

In this case, we find that

λ‖
lslab

= 1

2πC(s)

B2
0

δB2
slab

R2−sε1−s . (20)

Since we have assumed s > 1 (s = 5/3 can be seen as standard
value for the inertial range spectral index), the parallel mean free
path decreases with increasing ε in this regime.

3.5.2 The limit εR 	 1

Here, we find that equation (19) yields

λ‖
lslab

= 1

2πC(s)

B2
0

δB2
slab

R2ε (21)

and the parallel mean free path is directly proportional to the param-
eter ε. In Section 5, we will compare the different results derived
above with test-particle simulations.

4 T H E P E R P E N D I C U L A R M E A N FR E E PAT H
BA S E D O N U N LT TH E O RY

The UNLT theory provides a non-linear integral equation for the
perpendicular diffusion coefficient. In Shalchi (2011a), the theory
was extended to allow for dynamical turbulence. In this case, the
dynamical correlation function was an exponential function with
real argument (corresponding to ω = 0 and γ �= 0 in equation (4) of
the current paper). In the current section, we consider for the first
time the UNLT theory for the case of propagating plasma waves
and we derive analytical expressions for the perpendicular diffu-
sion coefficient based on that theory. We can replace the dynamical
turbulence model considered in Shalchi (2011a) by the model of un-
damped propagating plasma waves by using the formal replacement
ω → iω.

Furthermore, the real part has to be taken and the UNLT theory
becomes in this case

κ⊥ = a2v2

3B2
0

�
∫

d3k
Pxx(k)

iω + F (k) + (4/3)κ⊥k2
⊥ + v/λ‖

, (22)

where we have used

F (k) = (2vk‖/3)2

iω + (4/3)κ⊥k2
⊥

. (23)

The parameters used here were already used above except the pa-
rameter a. The latter parameter is related to the probability that par-
ticles follow magnetic field lines. It is still unclear what the value
of that parameter really is in the general case (see, e.g. Matthaeus
et al. 2003; Shalchi & Dosch 2008). However, for slab turbulence
we expect that particles follow field lines and, therefore, we assume
a = 1. If the UNLT theory is used in the current paper, we always
use this value.

In the following, we employ the slab model (3) and equation (22)
becomes

κ⊥ = 4π
a2v2

3B2
0

�
∫ ∞

0
dk‖

g
(
k‖

)
iω + F (k‖) + v/λ‖

(24)

with

F (k) = −i

(
2vk‖

)2

9ω
. (25)

Easily, one can take the real part to find

κ⊥ = 4π
a2v2

3B2
0

v

λ‖

∫ ∞

0
dk‖

g
(
k‖

)
v2/λ2

‖ +
[
ω − (

2vk‖/3
)2

/ω
]2 . (26)

To proceed, we use the model of parallel propagating shear Alfvén
waves (5) and introduce the function

A =
∣∣∣∣jε − 4

9jε

∣∣∣∣ =
∣∣∣∣ε − 4

9ε

∣∣∣∣ (27)

with ε = vA/v to find

κ⊥ = 4π
a2v2

3B2
0

v

λ‖

∫ ∞

0
dk‖

g
(
k‖

)
v2/λ2

‖ + v2A2k2
‖
. (28)

To proceed, we use the spectrum used in Shalchi (2014):

gslab(k‖) = 1

4π2
lslabδB

2
slab

1

1 + (
k‖lslab

)2 . (29)

This spectrum is a special case of the more general form (11).
Spectrum (29) corresponds to the model (11) if we set s = 2. A more
realistic value for the inertial range spectral index would be s = 5/3
(see Kolmogorov 1941). However, the exact value of the parameter s
is not important if it comes to the perpendicular diffusion coefficient
(see, e.g. Shalchi 2013b, 2014 for more details).

With this form of the spectrum, equation (28) becomes

κ⊥ = a2v2

3πB2
0

lslabδB
2
slab

v

λ‖

×
∫ ∞

0
dk‖

1

v2/λ2
‖ + v2A2k2

‖

1

1 + (
k‖lslab

)2 . (30)

Now, we use the perpendicular mean free path λ⊥ = 3κ⊥/v and the
integral transformation x = k‖lslab. Furthermore, we introduce

B = lslab

λ‖A
(31)
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to write

λ⊥/lslab = a2 δB2
slab

B2
0

lslab

πA2λ‖

∫ ∞

0
dx

1

B2 + x2

1

1 + x2
. (32)

According to Gradshteyn & Ryzhik (2000), the integral yields∫ ∞

0
dx

1

B2 + x2

1

1 + x2
= π

2B

1

1 + B
. (33)

Note that B was defined as a positive real number. Therefore, the
perpendicular mean free path can finally be written as

λ⊥/lslab = 1

2
a2 δB2

slab

B2
0

1

A

1

1 + B
. (34)

By using equations (27) and (31), the latter equation becomes

λ⊥/lslab = 1

2
a2 δB2

slab

B2
0

1∣∣ε2 − 4/9
∣∣ /ε + lslab/λ‖

. (35)

The latter equation can easily be used to compute the perpendicular
mean free path versus the parallel mean free path for certain values
of ε. Below, we consider different limits/cases to achieve a further
simplification of the latter formula.

In Shalchi (2014), the perpendicular mean free path was calcu-
lated by evaluating the UNLT theory for a dynamical turbulence
model, where ω = 0 but γ �= 0. For slab turbulence, a similar
formula was obtained there (compare with equation 20 of Shalchi
2014). However, the formula derived in the aforementioned paper is
different compared to equation (35) for the general case. Therefore,
we conclude that wave propagating effects (described by the disper-
sion relation ω) and damping effects (described by the parameter γ )
influence the perpendicular diffusion coefficient in a different way.

In Shalchi, Bieber & Matthaeus (2004), the perpendicular mean
free path was calculated for the same turbulence model considered
in the current paper, namely the model of Alfvénic slab turbulence.
However, these authors used the non-linear guiding centre theory of
Matthaeus et al. (2003). The results they obtained are very different
compared to equation (35) derived above (compare with equation
34 of Shalchi et al. 2004).

4.1 The special case ε � lslab/λ‖ and ε � 2/3

For ε 	 2/3, equation (35) becomes

λ⊥/lslab = 1

2
a2 δB2

slab

B2
0

1

ε + lslab/λ‖
. (36)

If we additionally assume that ε 	 lslab/λ‖, the latter formula
simplifies to

λ⊥/lslab = 1

2
a2 δB2

slab

B2
0

1

ε
≡ 1

2
a2 δB2

slab

B2
0

v

vA
. (37)

According to this result, the perpendicular mean free paths decrease
with increasing Alfvén speed.

4.2 The special case lslab/λ‖ � ε � 2/3

In the case considered here, equation (36) can be combined with
the assumption lslab/λ‖ 	 ε and we find

λ⊥/lslab = 1

2
a2 δB2

slab

B2
0

λ‖/lslab. (38)

The latter formula is well known as diffusion theory (see, e.g.
Shalchi 2013b) and corresponds to the case where the particles
interact mainly with ballistic field lines while they propagate diffu-
sively in the parallel direction.

4.3 The special case 4λ‖/(9lslab) � ε and 2/3 � ε

For ε � 2/3, equation (35) becomes

λ⊥/lslab = 1

2
a2 δB2

slab

B2
0

1

4/(9ε) + lslab/λ‖
. (39)

For 4λ‖/(9lslab) 	 ε, the latter formula becomes

λ⊥/lslab = 9

8
a2 δB2

slab

B2
0

ε = 9

8
a2 δB2

slab

B2
0

vA

v
, (40)

which is in agreement with equation 47 of Shalchi, Tautz &
Schlickeiser (2007). The latter authors used a compound diffusion
model to describe perpendicular diffusion. The case considered
here, contains also the magnetostatic limit (ε = 0) and we can clearly
see that in this limit the perpendicular mean free path becomes
λ⊥ = 0 corresponding to subdiffusive transport.

4.4 The special case 2/3 � ε � 4λ‖/(9lslab)

For 4λ‖/(9lslab) � ε, equation (39) becomes

λ⊥/lslab = 1

2
a2 δB2

slab

B2
0

λ‖/lslab, (41)

in agreement with equation (38).
Below, we compare the analytical results derived above with

computer simulations.

5 TEST-PA RTI CLE SI MULATI ONS

In the following, we perform simulations to obtain parallel and per-
pendicular diffusion coefficients numerically. To simulate the trans-
port of energetic particles, one has to perform three steps. The first
is the generation of turbulence. Thereafter, we solve the Newton–
Lorentz equation numerically and the third step is the calculation
of diffusion coefficients based on the ensemble of obtained particle
trajectories.

5.1 Generating the turbulence

To create the turbulence, we use the same method used and de-
scribed in Hussein & Shalchi (2014). This approach is based on
previous work where similar simulations were performed (see, e.g.
Michałek & Ostrowski 1996; Tautz 2010a,b) and it can be used to
create different models such as slab, two-dimensional, and isotropic
turbulence. In the following, we describe this approach for the gen-
eral case and thereafter we specialize to slab turbulence.

The basic idea is to generate random magnetic fluctuations by
the superposition of a large number Nm of plane waves. Compared
to Hussein & Shalchi (2014), we include an oscillating factor de-
scribing the wave propagation effects following Tautz (2010a) and
Tautz & Shalchi (2013). In this case, the turbulent magnetic field
vector is calculated through

δB(x, y, z) = Re

Nm∑
n=1

A(kn)ξ̂nei[knz′
n+βn−ω(kn)t]. (42)

A(kn) is the amplitude function (see below), z′
n is the third compo-

nent of the vector x′
n defined below, βn is the random phase angle

for each wave mode, and ξ̂n is the polarization (unit) vector. The
latter vector is given by

ξ̂n = cos(αn)êx′
n
+ i sin(αn)êy′

n
, (43)
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where αn is the random polarization angle and the unit vectors êx′
n

and êy′
n

are given by

êx′
n

=

⎛
⎜⎝

M11

M12

M13

⎞
⎟⎠ and êy′

n
=

⎛
⎜⎝

M21

M22

M23

⎞
⎟⎠ . (44)

The elements Mij refer to the three-dimensional rotational matrix

M =

⎛
⎜⎝

cosθncosφn cosθnsinφn −sinθn

−sinφn cosφn 0

sinθncosφn sinθnsinφn cosθn

⎞
⎟⎠ (45)

and the primed coordinates are obtained by

x′
n = M · x. (46)

θn and φn are polar and azimuthal angles, respectively. This rep-
resentation ensures that the solenoidal constraint ∇ · δB = 0 (cor-
responding to kn · ξ̂n = 0) is satisfied. For isotropic turbulence, for
instance, the two angles θn and φn are randomly generated for each
summand n. For the slab model used here, however, we set the polar
angle θn = 0 whereas φn is still generated randomly. We sum over
Nm = 512 wave modes to create the turbulence with wave numbers
ranging from kminlslab = 10−7 to kmaxlslab = 105.

For the dispersion relation in equation (42), we use ω(kn) =
jvAkn with j = ±1 in agreement with equation (5). As before, the
parameter j is equal to ±1 corresponding to forward and backward
moving waves. In the simulations, we assume a 50 per cent/50
per cent contribution from either direction. The wave numbers are
logarithmically spaced between a minimum wavenumber kminlslab

and a maximum wavenumber kmaxlslab in such a way that �kn/kn is
constant. For the turbulence spectrum, we use the same model as
used for the analytical work, namely equation (11). For the inertial
range spectrum index, we use the value s = 5/3 in agreement with
Kolmogorov’s theory of turbulence (see Kolmogorov 1941). The
amplitude function is related to the spectrum via A(kn) ∝ √

g(kn).
More technical details about the creation of turbulence can be found
in Hussein & Shalchi (2014).

5.2 Calculating particle trajectories

By using the turbulence simulations described above in combination
with the Newton–Lorentz equation, we can compute particle orbits.
Since electric fields are neglected, the Newton–Lorentz equation
has the form

mγ v̇ = q

c
v × (B0 + δB), (47)

where we have used the particle mass m, the particle charge q, the
speed of light c, and the Lorentz factor γ . The turbulent magnetic
fields are created anew along the trajectory of each particle. This
method saves time and memory space compared to the grid method
(see again Hussein & Shalchi 2014 for more details). In the follow-
ing, several dimensionless parameters are introduced, namely the

time τ = 
t and rigidity R = RL/lslab. By using these parameters,
we solve the following two (coupled) differential equations:

d

dτ

x
lslab

= R (48)

and

d

dτ
R = R ×

(
êB0 + δB

B0
êδB

)
. (49)

The two vectors êB0 and êδB are unit vectors pointing in the direction
of the background and turbulent magnetic fields, respectively. By
using the dimensionless parameters as described above, the plasma
wave dispersion relation (5) becomes

ω(kn)t = ±R(vA/v)(knlslab)(
t). (50)

The numerical solver used to integrate equations (48) and (49) is
based on a fourth-order Runge–Kutta method. The trajectories for
1000 particles were calculated for a maximum (dimensionless) time
of τmax = 104 or τmax = 105 as needed.

5.3 Obtaining the different diffusion coefficients

In the previous paragraphs, we described how one can obtain an
ensemble of test-particle trajectories. From this ensemble, one can
compute transport parameters by using mean square displacements.
The quantity which is obtained from the simulations is the so-called
running diffusion coefficient

κii(t) = 1

2t

〈
(�xi(t))

2
〉

(51)

with �xi(t) = xi(t) − xi(0). The calculation of the diffusion pa-
rameters via mean square displacements, however, is not valid if
it comes to the drift coefficient(s) κxy and κyx (see Shalchi 2011b).
From equation (51), the diffusion coefficient can then be obtained
by looking at the late time behaviour corresponding to the limit
t → ∞ in analytical treatments of the transport. Alternatively, one
can compute mean free paths which are related to spatial diffusion
coefficients via λi = 3κ i/v.

5.4 Simulation results

We perform the simulations to compute parallel and perpendicular
mean free paths. Our aim is to explore how these two parameters
depend on the rigidity R, the turbulence strength δB/B0, and Alfvén
speed vA. Our numerical results are listed in Tables 1–4.

In Figs 1 and 2, we show the parallel and perpendicular mean free
paths versus the time. One can easily see that diffusive behaviour
is obtained for the parallel diffusion coefficient for all considered
values of ε = vA/v. For the perpendicular diffusion coefficient we
find the well-known subdiffusive behaviour if ε = 0. As soon as
ε �= 0, diffusion is recovered. This conclusion agrees with the results
obtained before by Michałek & Ostrowski (1996) and Tautz (2010a).

In Fig. 3, we show the perpendicular mean free path versus the
magnetic field ratio δB0/B0 for R = 1.0 and vA/v = 0.1. One can
easily see that λ⊥ ∼ δB2/B2

0 for the considered parameter regime.

Table 1. The simulated mean free paths along and across the mean magnetic field versus the ratio ε = vA/v. Here, we have used R = RL/lslab = 0.1,
δB/B0 = 1, and s = 5/3.

vA/v 0.0 0.01 0.02 0.04 0.06 0.08 0.1 1.0 2 5 10 50 100 103 104

λ‖/lslab 2.4 2.5 2.5 2.6 2.6 2.45 2.3 0.58 0.38 0.28 0.28 0.9 1.9 29 73
λ⊥/lslab subdiff. 0.01 0.02 0.04 0.06 0.08 0.1 0.15 0.075 0.04 0.025 0.0065 0.0035 0.0003 7.0 × 10−5
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Figure 1. The (running) parallel mean free path λ‖/lslab versus the dimen-
sionless time τ = 
t. Here, we have set δB/B0 = 1.0 and R = 1.0 and
computed the corresponding transport parameter for three different values
of ε = vA/v.
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Figure 2. The (running) perpendicular mean free path λ⊥/lslab versus the
dimensionless time τ = 
t. Here, we have set δB/B0 = 1.0 and R = 1.0 and
computed the corresponding transport parameter for three different values
of ε = vA/v.
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Figure 3. The perpendicular mean free path λ⊥/lslab versus the magnetic
field ratio δB0/B0 for R = 1.0 and ε ≡ vA/v = 0.1. The slope of this graph
is very close to 2 confirming the scaling λ⊥/lslab ∼ (δB/B0)2 obtained from
the UNLT theory.
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Figure 4. The parallel mean free path λ‖/lslab versus vA/v for three differ-
ent values of the rigidity R and constant δB/B0 = 1.0.
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Figure 5. The parallel mean free path λ‖/lslab versus vA/v for three differ-
ent values of δB/B0 and constant R = 0.1.
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Figure 6. The perpendicular mean free path λ⊥/lslab versus vA/v for three
different values of the rigidity R and constant δB/B0 = 1.0.

This behaviour is in agreement with the results provided by UNLT
theory. We like to emphasize that one can also find a parameter
regime where the perpendicular mean free path is directly propor-
tional to the parallel mean free path. Since the latter parameter
depends also on the magnetic field ratio, the magnetic field depen-
dence of the perpendicular diffusion coefficient is more complicated
in such cases.

In Figs 4–7, we compute the parallel and perpendicular mean
free paths versus ε = vA/v for different values of the ratio δB0/B0
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Figure 7. The perpendicular mean free path λ‖/lslab versus vA/v for three
different values of δB/B0 and constant R = 0.1.

and different magnetic rigidities represented by the parameter
R ≡ RL/lslab. As shown, the magnetic field ratio as well as the
rigidity have a strong influence on the parallel mean free path as
expected. The perpendicular mean free path, however, does not ex-
plicitly depend on the rigidity for the parameter regimes considered
here. Changing the magnetic field ratio does change the perpendic-
ular diffusion parameter as already discussed above.

5.5 Testing analytical predictions

Above, we have shown different numerical results for the case
of parallel propagating shear Alfvén waves. In the following, we
compare our simulations directly with the analytical results derived
in Sections 3 and 4. To calculate the parallel mean free path, we use
equations (16) and (19), and for the perpendicular mean free path
we employ equation (35). For the latter calculations, we set a2 = 1
as discussed in Section 4.

In Fig. 8, we show the two mean free paths versus the ratio
ε ≡ vA/v for RL/lslab = 0.1, δB/B0 = 1, and s = 5/3. According
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Figure 8. The parallel mean free path and the perpendicular mean free
path versus ε ≡ vA/v. Here, we have used RL/lslab = 0.1, δB2/B2

0 = 1, and
s = 5/3. Shown are the simulated parallel mean free paths (squares) and the
simulated perpendicular mean free path (dots). The theoretical parallel mean
free paths are based on QLT and were computed by employing equation (16)
for small values of ε (dotted line) and equation (19) for large values of ε

(dashed line), respectively. The theoretical perpendicular mean free paths
were calculated by using equation (35) which is based on the UNLT theory
(solid line).
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Figure 9. Figure caption is the same as in Fig. 8 but here we have used
RL/lslab = 1.0.

to this figure, QLT agrees very well with the parallel mean free
paths obtained numerically. Furthermore, the simulations confirm
the UNLT theory for parallel propagating shear Alfvén waves. In
Fig. 9, we provide a similar comparison but we have changed the
rigidity from RL/lslab = 0.1–1.0. For this value of R, QLT and
UNLT theory are confirmed also. The results from our test-particle
simulations are listed in Tables 1 and 2 to make it easier for the
reader to reproduce the figures if required.

In Tables 3 and 4, we have shown more simulations. Here, we
employed our code for the cases where v ≈ vA. In this case, equa-
tion (38) should be valid and we expect that λ⊥/λ‖ ≈ 0.5. Our
simulations also confirm the UNLT theory for such cases.

6 SU M M A RY A N D C O N C L U S I O N

In the current paper, we have investigated the interaction of ener-
getic particles with parallel propagating shear Alfvén waves. For
the analytical work, we have used QLT to compute the parallel dif-
fusion coefficient. This procedure is well known in diffusion theory
(see, e.g. Schlickeiser 2002) and based on the assumption that QLT
is valid for parallel transport in slab turbulence (see, e.g. Shalchi
2009). The perpendicular diffusion coefficient is calculated by ex-
tending the UNLT theory of Shalchi (2010, 2011a). We have also
performed detailed test-particle simulations for the same turbulence
model.

In this work, we have achieved the following:

(i) We have derived an integral equation for the perpendicular
diffusion coefficient based on UNLT theory (see equations 22 and
23 of this paper). The latter equations were then combined with the
slab model of turbulence (see equation 28). For a model spectrum,
a simple formula for the perpendicular diffusion coefficient was
derived. Equation (35) allows the analytical description of perpen-
dicular transport if the parallel diffusion coefficient is known.

(ii) We used test-particle simulations to explore how parallel and
perpendicular diffusion parameters depend on the magnetic rigidity,
the magnetic field ratio δB/B0, and the Alfvén speed vA. Figs 3–7
show our results. This work complements previous numerical work
such as the papers by Michałek & Ostrowski (1996), Tautz (2010a),
and Tautz & Shalchi (2013).

(iii) We presented a detailed comparison between analytical the-
ory and computer simulations to check our understanding of particle
transport in Alfvénic slab turbulence (see Figs 8 and 9). According
to this comparison, QLT works very well for parallel transport for
this specific turbulence model. This confirmed our expectations.
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Table 2. The simulated mean free paths along and across the mean magnetic field versus the ratio ε = vA/v. Here, we have used R = RL/lslab = 1.0,
δB/B0 = 1, and s = 5/3.

vA/v 0.0 0.01 0.02 0.04 0.06 0.08 0.1 1.0 2 5 10 50 100 103 104

λ‖/lslab 7.0 7.4 6.8 7.2 7.5 6.9 7.2 2.9 3.7 8.2 17.5 240 290 1500 9000
λ⊥/lslab subdiff. 0.01 0.02 0.04 0.06 0.08 0.1 0.37 0.15 0.058 0.03 0.005 0.0025 0.000 45 6.0 × 10−5

Table 3. The simulated mean free paths along and across the mean
magnetic field versus the rigidity R = RL/lslab. Here, we have used
ε = vA/v = 2/3, δB/B0 = 1, and s = 5/3.

R 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1

λ‖/lslab 0.084 0.18 0.25 0.29 0.35 0.53 0.78
λ⊥/lslab 0.038 0.08 0.11 0.13 0.15 0.22 0.27
λ⊥/λ‖ 0.45 0.44 0.44 0.45 0.43 0.42 0.35

Table 4. The simulated mean free paths along and across the mean
magnetic field versus the rigidity R = RL/lslab. Here, we have used
ε = vA/v = 1, δB/B0 = 1, and s = 5/3.

R 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1

λ‖/lslab 0.074 0.11 0.13 0.19 0.22 0.33 0.58
λ⊥/lslab 0.03 0.044 0.052 0.077 0.085 0.11 0.15
λ⊥/λ‖ 0.41 0.40 0.40 0.41 0.39 0.33 0.26

Furthermore, the perpendicular diffusion coefficient provided by
UNLT theory is almost perfectly in coincidence with the numerical
work.

Since the validity of QLT in Alfvénic slab turbulence is known,
the most important result of the current paper is the fact that UNLT
theory agrees with the simulated perpendicular diffusion coeffi-
cients for the cases we considered. Though this is not a general
proof, this confirms again that UNLT theory is a powerful tool
in diffusion theory. The latter theory was already confirmed to be
valid for a magnetostatic slab/2D composite model and Goldreich–
Sridhar turbulence (see Tautz & Shalchi 2011; Shalchi 2013a).
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