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Abstract We explore the influence of turbulence on the transport of energetic particles by using test
particle simulations. We compute parallel and perpendicular diffusion coefficients for two-component
turbulence, isotropic turbulence, a model based on Goldreich-Sridhar scaling, noisy reduced
magnetohydrodynamic turbulence, and a noisy slab model. We show that diffusion coefficients have a
similar rigidity dependence regardless which turbulence model is used, and thus, we conclude that the
influence of turbulence on particle transport is not as strong as originally thought. Only fundamental
quantities such as particle rigidity and the Kubo number are relevant. In the current paper we also confirm
the unified nonlinear transport theory for noisy slab turbulence. To double check the validity and accuracy
of our numerical results, we use a second test particle code. We show that both codes provide very similar
results confirming the validity of our conclusions.

1. Introduction

There are two fundamental problems in plasma physics and astrophysics, namely, the understanding of mag-
netic turbulence and the propagation of energetic particles such as cosmic rays through a plasma. It is well
known and accepted that these two problems are linked to each other. In analytical treatments of particle
transport, for instance, a crucial input is the so-called magnetic correlation tensor describing the turbulence.
Energetic particles are assumed to move diffusively, and thus, a diffusive transport equation is usually used
to model their motion (see, e.g., Schlickeiser [2002] for a review). Fundamental quantities in that transport
equation are the spatial diffusion coefficients, besides other transport parameters such as the coefficient of
stochastic acceleration. We would like to emphasize that in recent years nondiffusive transport has been dis-
cussed as well [see, e.g., Zimbardo et al., 2006; Pommois et al., 2007; Shalchi and Kourakis, 2007; Tautz and
Shalchi, 2010; Zimbardo et al., 2012].

The turbulent magnetic fields 𝛿B⃗, which control the transport of energetic particles, are superposed by a
mean magnetic field B⃗0. In the general case one has to distinguish between diffusion along and across that
mean field. In the former case the important quantity is the parallel diffusion coefficient 𝜅∥ and in the latter
case the perpendicular diffusion coefficient 𝜅⊥. Together with the so-called drift coefficient 𝜅A, they form the
diffusion tensor.

The knowledge of diffusion parameters is essential for different applications such as the description of diffu-
sive acceleration at interplanetary shocks [see, e.g., Zank et al., 2004; Dosch and Shalchi, 2010; Li et al., 2012;
Wang et al., 2012]. In the context of interstellar shocks, such as supernova remnant shocks, usually simple diffu-
sion models are employed but it was shown recently that the form of the diffusion coefficient can have a strong
impact on the cosmic ray spectrum [see Ferrand et al., 2014]. Analytical forms of the diffusion coefficients are
also required for studies of solar modulation and space weather [see, e.g., Alania et al., 2013; Engelbrecht and
Burger, 2013; Manuel et al., 2014; Potgieter et al., 2014; Zhao et al., 2014; Engelbrecht and Burger, 2015]. To under-
stand the propagation of cosmic rays in different astrophysical environments, the knowledge of transport
parameters is also required [see, e.g., Shalchi and Büsching, 2010; Thornbury and Drury, 2014].

As mentioned above, a critical quantity entering diffusion theories is the magnetic correlation tensor describ-
ing the turbulence. Therefore, one could conclude that a detailed understanding of turbulence is crucial in
the theory of energetic particles. However, there are also some indications obtained from analytical theory
that transport is universal meaning that the details of turbulence are not important if diffusion coefficients are
calculated. Based on the unified nonlinear transport (UNLT) theory [see Shalchi, 2010], it was shown in Shalchi
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[2014] that diffusion coefficients of magnetic field lines and perpendicular diffusion coefficients of energetic
particles only depend on fundamental length scales of the turbulence and the magnetic field ratio 𝛿B∕B0. This
statement was strengthened by the work of Shalchi [2015] where it was shown that the field line diffusion
coefficient is only controlled by the Kubo number and the perpendicular diffusion coefficient of energetic
particles is only controlled by the Kubo number and the parallel mean free path. The details of the spectrum
such as spectral shape or anisotropy are not important as long as the aforementioned scales are finite (see,
e.g., Matthaeus et al. [2007], Shalchi [2014], and Shalchi [2015] for details).

In the current paper we are trying to achieve the following:

1. We perform test particle simulations for five different turbulence models, namely, the two-component
model, isotropic turbulence, Goldreich-Sridhar turbulence, the noisy reduced magnetohydrodynamic
(NRMHD) model, and a noisy slab model. All models are briefly presented in section 2 of the current paper.
We compute numerically the parallel and perpendicular diffusion coefficients and compare them with each
other. We aim to investigate the influence of the turbulence onto the different transport parameters.

2. In Shalchi [2015] a new perpendicular transport regime was discovered for the case of short parallel mean
free paths and small Kubo numbers. This new regime is very similar compared to the scaling originally
obtained by Rechester and Rosenbluth [1978]. In the current paper we simulate for the first time particle
transport in noisy slab turbulence and test numerically the aforementioned predictions.

3. We employ a second test particle code, namely, the so-called PADIAN code developed by Tautz [2010] to
compute the different diffusion coefficients independently. This will allow us to check the validity of our
simulations and to understand how accurate and reliable our findings are.

The remainder of this paper is organized as follows. In section 2 we discuss the different turbulence models
employed in the current paper. The test particle code which is used is discussed in section 3. In section 4 we
show the diffusion coefficients along and across the mean magnetic field for the different turbulence models.
In section 5 we use the PADIAN code to check the validity of the results presented in section 4, and we end
with a short summary and some conclusions in section 6.

2. Synthetic Models of Turbulence

In analytical diffusion theories and also in test particle simulations, an important quantity is the so-called
magnetic correlation tensor defined as

Plm

(
k⃗
)
=
⟨
𝛿Bl

(
k⃗
)
𝛿B∗

m

(
k⃗
)⟩

. (1)

Here we have used the ensemble average operator ⟨… ⟩. In the general case, the latter tensor can also depend
on time (see, e.g., Schlickeiser [2002] and Shalchi [2009] for reviews). In the current paper we use the mag-
netostatic approximation. In the theory of particle transport, the latter approximation can be justified by
considering only particles moving much faster than the Alfvén speed. Such particle energies and rigidities are
considered in the present paper.

It is still unclear what the exact form of the correlation tensor really is in different physical scenarios. One
would expect that turbulence in the solar system is different compared to turbulence in the interstellar space
(see, e.g., Hunana and Zank [2010] or Shalchi et al. [2010] for a more detailed discussion of this matter). In
the following we review five different models which were discussed in the literature before. We do not judge
which of these models is more realistic nor do we claim that our list of turbulence models is complete.

2.1. The Two-Component Model
In very early treatments of particle transport, simple models for the turbulence have been employed. Jokipii
[1966], for instance, used a so-called slab model in which the magnetic correlation tensor has by definition the
following form:

Pslab
lm (k⃗) = gslab(k∥)

𝛿(k⊥)
k⊥

𝛿lm, (2)

with l,m = x, y. Here we have used the Kronecker delta 𝛿lm and the Dirac delta 𝛿(k⊥), respectively. The other
tensor components are zero due to the solenoidal constraint. Furthermore, we have used the spectrum of

HUSSEIN ET AL. DIFFUSION OF ENERGETIC PARTICLES 4096



Journal of Geophysical Research: Space Physics 10.1002/2015JA021060

the slab modes gslab(k∥), and we have used the wave vector components along and across the mean mag-
netic field k∥ and k⊥, respectively. The slab model is basically a one-dimensional model in which the turbulent
magnetic field depends only on the coordinate along the mean field.

Another model with reduced dimensionality is the so-called two-dimensional model where we have
by definition

P2D
lm (k⃗) = g2D(k⊥)

𝛿(k∥)
k⊥

(
𝛿lm −

klkm

k2
⊥

)
(3)

if l,m = x, y and Plz = Pzm = Pzz = 0. In this particular model the magnetic field vector and the spatial
dependence are two dimensional. Above we have used the spectrum of the two-dimensional modes g2D(k⊥).

A model which is frequently used to approximate solar wind turbulence is the so-called two-component
model in which we have

Pcomp
lm (k⃗) = Pslab

lm (k⃗) + P2D
lm (k⃗). (4)

This model is supported by solar wind observations [see, e.g., Matthaeus et al., 1990; Osman and Horbury,
2009a, 2009b; Turner et al., 2012], numerical simulations [see Oughton et al., 1994; Matthaeus et al., 1996; Shaikh
and Zank, 2007], and analytical work [see Zank and Matthaeus, 1993]. To complement the two-component
model, we have to specify the two spectra gslab(k∥) and g2D(k⊥), respectively. For the former spectrum we use
the form proposed by Bieber et al. [1994]

gslab(k∥) =
C(s)
2𝜋

𝛿B2
slablslab

1[
1 + (k∥lslab)2

]s∕2
, (5)

where we have used the slab bendover scale lslab, the magnetic field strength of the slab modes 𝛿Bslab, and
the inertial range spectral index s. The normalization function C(s) is given below. For the spectrum of the
two-dimensional modes we employ the one proposed by Shalchi and Weinhorst [2009]

g2D(k⊥) =
2D(s, q)

𝜋
𝛿B2

2Dl2D

(k⊥l2D)q[
1 + (k⊥l2D)2

](s+q)∕2
, (6)

where we have used the two-dimensional bendover scale l2D, the magnetic field strength of the
two-dimensional modes 𝛿B2D, and the energy range spectral index q. The normalization function is given by

D(s, q) =
Γ
(

s+q
2

)
2Γ
(

s−1
2

)
Γ
(

q+1
2

) , (7)

where we have used the gamma function Γ(z). The spectrum (6) is correctly normalized if s> 1 and q>−1
are satisfied. The normalization function of the slab spectrum is a special case of the function D(s, q). The two
functions are related to each other via C(s) ≡ D(s, q = 0). To ensure that the ultrascale and other fundamental
turbulence scales are finite, we only consider cases with q> 1 [see, e.g., Matthaeus et al., 2007; Shalchi, 2014].

2.2. Isotropic Turbulence
Before a more detailed understanding of turbulence became available, scientists used two simple models,
namely, the slab model discussed above and the isotropic model [see, e.g., Fisk et al., 1974; Bieber et al., 1988].
In the latter case the turbulent magnetic field itself depends on all three coordinates of space but there is no
preferred direction. In this case the correlation tensor has the form

Piso
lm =

giso(k)
8𝜋k2

(
𝛿lm −

klkm

k2

)
, (8)

where we have used the isotropic spectrum giso(k) which is defined so that

∫
∞

0
dk giso(k) = 𝛿B2. (9)

For the latter spectrum we employ the form

giso(k) = 4D(s, q)l0𝛿B2

(
kl0
)q[

1 +
(

kl0
)2
](s+q)∕2

(10)
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corresponding to the spectrum used above for two-dimensional turbulence. In the current paper we set q = 3
if the isotropic model is considered to ensure again finite turbulence scales. The parameter l0 denotes the
bendover scale.

2.3. Goldreich-Sridhar Turbulence
The Goldreich-Sridhar model [see Goldreich and Sridhar, 1995] does not predict the exact form of the tensor of
Alfvénic perturbations; it only states that most energy will be in the state of critical balance. Combining the
critical balance condition with the Kolmogorov cascading, one gets the relation between k∥ and k⊥, namely,|k∥| ∼ k2∕3

⊥
.

The caveat here is that the wave numbers are defined in the global magnetic field frame of reference; this may
be misleading. The critical balance is the condition satisfied only in the frame related to the local magnetic
field. In what follows we use the parallel and perpendicular wave numbers but understand them in terms of
wavelets, which allow the choice of the local magnetic field. More details concerning this matter can be found
in Lazarian and Vishniac [1999] as well as in Kowal and Lazarian [2010].

Cho et al. [2002] have proposed a specific form of the magnetic correlation tensor which is in agreement with
the relations discussed above. Shalchi [2013] has suggested to use the following generalization of that form

PGS
lm (k⃗) = gGS(k∥, k⊥)

(
𝛿lm −

klkm

k2

)
(11)

with

gGS(k∥, k⊥) =
D(s, q)

2𝜋
l3𝛿B2

(
k⊥l
)q−s[

1 +
(

k⊥l
)2
](s+q)∕2

e−l2−s|k∥|k1−s
⊥ (12)

which is only valid for s = 5∕3. Compared to Cho et al. [2002], the latter spectrum takes into account a more
general behavior at large scales corresponding to the energy range. This spectrum and similar analytical forms
were used before in the theory of energetic particle transport [see, e.g., Chandran, 2000; Cho et al., 2002; Shalchi
et al., 2010; Sun and Jokipii, 2011; Shalchi, 2013]. In Shalchi [2014] fundamental length scales of turbulence
were computed for this type of spectrum. There it was shown that the ultrascale is only finite if q> 1. Therefore,
we set q = 2 if the Goldreich-Sridhar model is considered.

2.4. The NRMHD Model
Above we have discussed the two-dimensional turbulence model. One could argue that this model is a sin-
gular model because there is no variation of the turbulent field along the z axis. Ruffolo and Matthaeus [2013]
proposed a so-called noisy reduced magnetohydrodynamic (NRMHD) turbulence model in which the magnetic
correlation tensor (1) has the following form:

Pnr
lm(k⃗) =

g2D(k⊥)
2k⊥K

Θ
(

K − |||k∥|||)
(
𝛿lm −

klkm

k2
⊥

)
(13)

where we have employed the Heaviside step function Θ(x) which is defined so that Θ(x > 0) = 1 and Θ(x < 0)
= 0. Therefore, Θ(K − |k∥|) = 0 for |k∥|> K in agreement with the model used in Ruffolo and Matthaeus [2013].
The function g2D(k⊥) is the spectrum of the two-dimensional modes as used above. It is obvious from the
definition (13) that the NRMHD model can be understood as a broadened two-dimensional model. We can
easily recover the pure two-dimensional model discussed above by considering the limit K → 0.

In the following we use the same spectrum which was used before by Ruffolo and Matthaeus [2013] as well
as by Shalchi and Hussein [2014] in the context of NRMHD turbulence, namely, a spectrum with q = 3. In this
particular case equation (6) becomes

g2D
(

k⊥
)
= 4

9𝜋
l⊥𝛿B2

(
k⊥l⊥

)3[
1 +

(
k⊥l⊥

)2
]7∕3

. (14)

The model described here was already used in transport theory to compute field line diffusion coefficients
[see Ruffolo and Matthaeus, 2013; Snodin et al., 2013] and perpendicular diffusion coefficients of energetic
particle [see Shalchi and Hussein, 2014]. An interesting aspect of the NRMHD model is the fact that it contains
two characteristic length scales, namely, the perpendicular scale l⊥ and the parallel scale l∥ = K−1. It was
shown in Shalchi and Hussein [2014] and Shalchi [2015] that the scale ratio l∥∕l⊥ has a strong influence on the
perpendicular diffusion coefficient.
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2.5. A Noisy Slab Turbulence
Above we have used the NRMHD model which can be understood as a broadened two-dimensional model.
We can combine the same idea with the slab model which is done in the current paragraph. We define the
noisy slab model via [see Shalchi, 2015]

Pns
lm(k⃗) =

2l⊥
k⊥

gslab(k∥)Θ
(

1 − k⊥l⊥
)(

𝛿lm −
klkm

k2
⊥

)
(15)

where l⊥ is a characteristic length scale for the decorrelation across the mean magnetic field. In the case that
one or two indexes are equal to z, the element of the correlation tensor is assumed to be zero as in the pure
slab model defined above. If there is no broadening, corresponding to the case l⊥ → ∞, the noisy slab model
corresponds to the usual slab model. In equation (15) we have used again the Heaviside step function, and
gslab(k∥) is the usual spectrum of the slab modes as it was used above. To study particle diffusion in noisy slab
turbulence is interesting because Shalchi [2015] predicted that the ratio 𝜆⊥∕𝜆∥ is much smaller in this case
compared to other turbulence models.

3. Test Particle Simulations

In the current article, we perform simulations to obtain parallel and perpendicular diffusion coefficients
numerically. In computer simulations three steps have to be performed in order to obtain diffusion parame-
ters, which are

1. A specific turbulence model has to be simulated by employing the approach described below. Here we
consider the slab/2-D composite model, isotropic turbulence, Goldreich-Sridhar turbulence, the NRMHD
model, and a noisy slab model.

2. The Newton-Lorentz equation has to be solved numerically for an ensemble of particles to obtain their
orbits.

3. From these test particle trajectories, one can obtain the diffusion coefficients in the different directions
of space.

This method of generating the turbulence and simulating the motion of test particles was used before [see,
e.g., Giacalone and Jokipii, 1994; Michałek and Ostrowski, 1996; Reville et al., 2008; Tautz, 2010] and is different
compared to the grid method used by other authors [see, e.g., Qin et al., 2002a, 2002b].

3.1. General Remarks
In order to calculate the turbulent magnetic field at the position of the charged particle x⃗, one can use the
Fourier representation

𝛿B⃗
(

x⃗
)
= ∫ d3k 𝛿B⃗

(
k⃗
)

eik⃗⋅x⃗ . (16)

In order to benefit from symmetry, it is preferred to evaluate this integral either in spherical or cylindrical coor-
dinates. Since we are dealing with a numerical treatment, integrals are replaced by sums. The basic idea is to
generate random magnetic fluctuations by superposing a large number of plane waves with different and ran-
dom polarizations and phases. The dimensionality of the used turbulence model matters since it determines
to how many sums the integral will break up. For example, in turbulence models with reduced dimensional-
ity, such as slab or two-dimensional models, and for isotropic turbulence, the integral can be replaced by a
single sum because only one independent wave vector component controls the turbulent magnetic field. On
the other hand, Goldrich-Sridhar, NRMHD, and noisy slab models are more complicated. This is due to the fact
that two wave vector components are relevant, namely, k∥ and k⊥. Therefore, an extra sum is required making
the simulations more time consuming. In the following we elaborate on the technical details for the different
turbulence models.

3.2. Slab, Two-Dimensional, and Isotropic Turbulence
In order to simulate turbulence models with reduced dimensionality, we use the method described in
Hussein and Shalchi [2014a, 2014b]. More details about the numerical approach used in such simulations can
be found in Tautz and Dosch [2013]. In numerical treatments of the transport, it is convenient to use dimen-
sionless quantities instead of the physical quantities used above. If the slab model is considered, for instance,
physical quantities are the parallel component of the wave vector k∥ and the parallel particle position z. In
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Table 1. The Values Used in the Simulations for Slab, Two-Dimensional, Isotropic, NRMHD, Goldreich-Sridhar, and Noisy
Slab Turbulence

Turbulence Model 𝜂n 𝛼n Φn Wave Numbers Energy Range Spectral Index

Slab 1 0 Random kn = lslabk∥ 0

Two-dimensional 0 0 Random kn = l2Dk⊥ 2

Isotropic Random Random Random kn = l0k 3

NRMHD 0 0 Random kn = l⊥k⊥, km = l∥k∥ 3

Goldreich-Sridhar 0 Random Random kn = lk⊥, km = lk∥ 2

Noisy slab model 0 0 Random kn = l⊥k⊥, km = l∥k∥ 0

the test particle code those quantities are replaced by k∥ → k∥lslab and z → z∕lslab, respectively. More details
concerning other quantities such as the magnetic rigidity are discussed below.

In numerical work the turbulent magnetic field vector is calculated via

𝛿B⃗
(

x⃗
)
=
√

2𝛿B
N∑

n=1

A(kn)𝜉n cos
[

k⃗n ⋅ x⃗ + 𝛽n

]
. (17)

The parameter N corresponds to the number of simulated wave modes, and the quantity A(kn) denotes the
amplitude function (see below). In equation (17) we have also used the wave vector k⃗n = knk̂n with the random
wave unit vector

k̂n =

⎛⎜⎜⎜⎜⎝

√
1 − 𝜂2

n cos𝜙n√
1 − 𝜂2

n sin𝜙n

𝜂n

⎞⎟⎟⎟⎟⎠
. (18)

Furthermore, we have used the random phase 𝛽n and the polarization vector

𝜉n =
⎛⎜⎜⎜⎝
− sin𝜙n cos 𝛼n + 𝜂n cos𝜙n sin 𝛼n

cos𝜙n cos 𝛼n + 𝜂n sin𝜙n sin 𝛼n

−
√

1 − 𝜂2
n sin 𝛼n

⎞⎟⎟⎟⎠ (19)

with 𝜂n = cos 𝜃n. The angles 𝜃n, 𝜙n, and 𝛼n can have a specific value or they are random angles depending on
the simulated turbulence model (see Table 1 of the current paper for the used values).

The amplitude function A(kn) used above depends on the spectrum G(kn) via

A2(kn) = G(kn)Δkn

(
N∑

𝜇=1

G(k𝜇)Δk𝜇

)−1

. (20)

For the spectrum we use a form corresponding to the analytical models described above, namely,

G(kn) =
kq

n

(1 + k2
n)(s+q)∕2

. (21)

Table 2. Test Particle Simulations for Slab/2-D Turbulencea

RL∕lslab 0.01 0.05 0.1 0.5 1.0 5.0 10.0

𝜆HS
∥ ∕lslab 0.90 1.88 2.7 8.5 15.0 87.0 255

𝜆HS
⊥
∕lslab 0.048 0.08 0.11 0.26 0.35 0.43 0.45

𝜆P
∥∕lslab 0.932 − 2.581 − 15.0 − 266

𝜆P
⊥
∕lslab 0.049 − 0.123 − 0.384 − 0.456

a
For the energy range spectral index of the two-dimensional modes we used q = 2. The two scales are assumed to be

equal l2D = lslab, and we set 𝛿B2
slab

∕B2
0 = 0.2 and 𝛿B2

2D∕B2
0 = 0.8 as suggested by Bieber et al. [1996]. Listed are the results

obtained by using the Hussein and Shalchi code (HS) and the PADIAN code (P).
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Table 3. Test Particle Simulations for Isotropic Turbulencea

RL∕l0 0.01 0.05 0.1 0.5 1.0 5.0 10.0

𝜆HS
∥ ∕l0 0.51 1.05 1.35 3.55 7.1 82.0 330

𝜆HS
⊥
∕l0 0.018 0.04 0.06 0.16 0.235 0.305 0.32

𝜆P
∥∕l0 0.52 − 1.23 − 6.58 − 325

𝜆P
⊥
∕l0 0.018 − 0.059 − 0.257 − 0.319

a
For the energy range spectral index we used q = 3 as explained in the text. Listed are the results obtained by using

the Hussein and Shalchi code (HS) and the PADIAN code (P).

The parameters q and s are energy and inertial range spectral indexes as described above. For the slab modes
we use q= 0, for two-dimensional modes q= 2, and for isotropic turbulence q= 3. A Kolmogorov [1941]
spectrum with s= 5∕3 is used in all cases. To simulate slab turbulence, we set the polar angle 𝜃n = 0
corresponding to 𝜂n = 1. For two-dimensional turbulence, we set 𝜂n = 0 and 𝛼n = 0. For isotropic turbulence
all angles are randomly generated. The used values and the meaning of kn in the different models are
summarized in Table 1. The composite model is created upon superposing slab and two-dimensional modes
via equation (4). In the current paper we set 𝛿B2

slab∕B2
0 = 0.2 and 𝛿B2

2D∕B2
0 = 0.8 as suggested by Bieber

et al. [1996].

Equation (17) is used to compute the magnetic field at the considered position. An alternative approach to
compute turbulent magnetic fields is based on a fast Fourier transform to replace the summation [see, e.g.,
Decker and Vlahos, 1986; Decker, 1993].

3.3. Anisotropic Three-Dimensional Models
In the current paper we also simulate anisotropic three-dimensional models such as the Goldreich-Sridhar
model, NRMHD turbulence, and the noisy slab model. In such cases we replace the single sum in equation (17)
by a double sum. Now the turbulent magnetic field vector is given by

𝛿B⃗
(

x⃗
)
=
√

2𝛿B
M∑

m=1

N∑
n=1

A(kn, km)𝜉n cos
(

kn cos𝜙nx + kn sin𝜙ny + kmz + 𝛽n,m

)
(22)

corresponding to cylindrical coordinates where kn represents the perpendicular wave number k⊥ and km

represents the parallel wave number k∥. In equation (22) we have used again the polarization vector 𝜉n given
by equation (19) but set 𝜂n = 0 therein. The parameters M and N denote the number of wave modes in paral-
lel and perpendicular directions, respectively. In the case of NRMHD and noisy slab turbulence, we set 𝛼n = 0
to ensure that 𝛿Bz = 0. For Goldrich-Sridhar turbulence, however, 𝛼n is a random angle.

The function A(kn, km) used in equation (22) represents the wave amplitude, and parameter 𝛽n,m denotes the
random phase as before. For the amplitude function A(kn, km) we employ

A2(kn, km) =
G(kn)knΔkmΔkn∑M

𝜇=1

∑N
𝜈=1 G(k𝜈)k𝜈Δk𝜇Δk𝜈

(23)

and the turbulence spectrum G(kn) is in the case of the NRMHD model given by

G(kn) =
kq−1

n(
1 + k2

n

)(s+q)∕2
. (24)

Table 4. Test Particle Simulations for Goldreich-Sridhar Turbulencea

RL∕l 0.01 0.05 0.1 0.5 1.0 5.0 10.0

𝜆HS
∥ ∕l 0.62 1.01 1.34 3.3 9.25 98.0 410.0

𝜆HS
⊥
∕l 0.0215 0.052 0.0805 0.255 0.365 0.40 0.45

𝜆P
∥∕l 0.800 − 1.478 − 7.186 − 386

𝜆P
⊥
∕l 0.0251 − 0.0715 − 0.2711 − 0.348

a
For the energy range spectral index we used q = 2. Listed are the results obtained by using the Hussein and Shalchi

code (HS) and the PADIAN code (P).
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Table 5. Test Particle Simulations for NRMHD Turbulencea

RL∕l⊥ 0.01 0.05 0.1 1.0 5.0 10

𝜆HS
∥ ∕l⊥ 1.05 2.1 3.2 31 700 1875

𝜆HS
⟂ ∕l⊥ 0.04 0.063 0.088 0.195 0.25 0.25

𝜆P
∥∕l⊥ 1.279 − 5.002 56.47 − 2843

𝜆P
⟂∕l⊥ 0.0257 − 0.0948 0.4255 − 0.4302
a
For the energy range spectral index we used q = 3, and we assumed that l∥ = l⊥ . Listed are the results obtained by

using the Hussein and Shalchi code (HS) and the PADIAN code (P).

In the current paper we set q = 3 as originally used in Ruffolo and Matthaeus [2013]. Furthermore, we cut off
the spectrum in the parallel direction by using a maximum wave number corresponding to the parameter K
used in equation (13).

For the turbulence model based on Goldrich-Sridhar scaling we employ the spectrum

G(kn, km) =
kq−s

n(
1 + k2

n

)(s+q)∕2
e−|km|k1−s

n (25)

with s = 5∕3 and q = 2 as discussed above.

For the noisy slab model, we use the same spectrum used for slab turbulence, but we cut off the spectrum in
the perpendicular direction by using a maximum wave number corresponding to the parameter l∥∕l⊥.

3.4. Further Parameters and Accuracy Issues
For all anisotropic three-dimensional models, Δkm and Δkn are the spacings between wave numbers. In our
simulations we use a logarithmic spacing in km and kn so that

Δkn

kn
= exp

[
ln(kn,max∕kn,min)

N − 1

]
(26)

and the same for km. It is important that parallel wave numbers are distributed fine enough so that the
so-called resonance condition is satisfied. The resonance condition occurs in quasi-linear treatments of the
transport and states that parallel scattering occurs only if 𝜇RLk∥ = 1. In the latter condition we have used the
unperturbed Larmour radius RL at 𝜇 = 0 and the pitch angle cosine 𝜇. In the simulations we have to ensure
that a large amount of wave numbers are close to the corresponding k∥.

The size of the box is restricted by the so-called scaling condition that ensures that no particles travel beyond
the maximum size of the system, Lmax = k−1

min. This is ensured via the relation ΩtmaxkminRL < 1, which corre-
sponds to vtmax < Lmax. In parallel and perpendicular directions we used kmin = 10−5, leading to a relatively
large box to ensure that finite box size effects do not occur. For the maximal wave number we used kmax = 103

in both directions.

The simulations contain further parameters controlling the accuracy. We have to specify the number of
wave modes in the parallel direction N and perpendicular direction M, respectively. For the simulations per-
formed for slab, two-dimensional, and isotropic turbulence, there is only one maximum wave number. In this
case we have used N = 512 which is enough to satisfy the aforementioned conditions. For the anisotropic
three-dimensional models, the double sum makes it more challenging concerning computational time. For
the NRMHD model, we have used N = 256 and M = 32, respectively. We have performed test runs with M up

Table 6. The Hussein and Shalchi Simulations for Noisy Slab Turbulencea

RL∕l∥ 0.001 0.01 0.1 0.316 1.0 3.16 10.0 31.6 100

𝜆∥∕l∥ 0.3 0.66 1.35 2.15 4.15 12.4 77 730 7700

𝜆⊥∕l∥ 0.002 0.005 0.0085 0.012 0.032 0.181 0.40 0.51 0.59
a
For the scale ratio we have assumed l∥∕l⊥ = 0.5, and the used spectrum corresponds to the one used for the standard

slab model.
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Figure 1. The running parallel mean free paths from the Hussein and Shalchi simulations. Shown are the results
obtained for slab/2-D turbulence (dotted line), isotropic turbulence (solid line), Goldreich-Sridhar turbulence (dashed
line), and NRMHD turbulence (dash-dotted line).

to 128, and no significant differences were noticed. For the simulations performed for Goldrich-Sridhar and
noisy slab turbulence we have used N = 32 and M = 256.

The procedure described so far can be used to compute the turbulent magnetic field at the position of the
charged particle. To obtain the trajectories of the energetic and electrically charged particles, we solve the
Newton-Lorentz equation numerically for 1000 particles. The latter equation has the form

dp
dt

=
q
c

v⃗ × B⃗[x⃗(t)] (27)

where ⃗x(t) is the position of the particle in Cartesian coordinates. In equation (27) we replace the turbulent
magnetic field by using either equation (17) or (22). It is worth noting that we are using the relativistic version
of the Lorentz force, and so the momentum is given by p⃗ = 𝛾mv⃗. The simulations are done using a Monte Carlo
code where each particle is given a random initial position, pitch angle cosine 𝜇, and turbulence angles. After
injection, particles are traced for a sufficiently long time, around tens of thousands of gyroperiods for the par-
ticle to overcome the ballistic regime and move diffusively. For our numerical integrator we use Runge-Kutta
of fourth order which keeps truncation error relatively small and under control.

We have traced 1000 particles for a maximum running time of 𝜏max = Ωtmax = n × 104 with integer n ∈
1, 2, ..., 10 depending on the particle rigidity. When the particle is less energetic, i.e., has a lower rigidity, it takes
more time to move diffusively especially in the perpendicular direction. After that we have averaged over all

Figure 2. The running perpendicular mean free paths from the Hussein and Shalchi simulations. Shown are the results
obtained for slab/2-D turbulence (dotted line), isotropic turbulence (solid line), Goldreich-Sridhar turbulence (dashed
line), and NRMHD turbulence (dash-dotted line).
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Figure 3. The parallel mean free paths from the Hussein and Shalchi simulations. Shown are the results obtained for
slab/2-D turbulence (dotted line), isotropic turbulence (solid line), Goldreich-Sridhar turbulence (dashed line), and
NRMHD turbulence (dash-dotted line).

the 1000 realizations we have been using. To estimate the error calculated for the diffusion coefficients, we
follow the method explained in Tautz [2010]. This method takes into account the averaging procedure over
turbulence manifestation and over all particles. Within our calculations the error was relatively small given the
fairly large number of turbulence modes integrated over and the number of realizations used. This allowed
for diffusion to be fairly consistent and stable, so deviations from the mean diffusion coefficient were hardly
noticed. For that reason we do not include errors when plotting out final graphs.

4. Diffusion Coefficients Obtained From Test Particle Simulations

In the current section we perform the test particle simulations described in section 3. In order to distinguish
these results from the simulations presented in section 5, we refer to the code used here as the simulations
by Hussein and Shalchi. In the following we compute the parallel mean free path 𝜆∥ which is related to the
parallel spatial diffusion coefficient 𝜅∥ via 𝜆∥ = 3𝜅∥∕v, as well as the perpendicular mean free path 𝜆⊥ and the
ratio 𝜆⊥∕𝜆∥. In Tables 2–6 we summarize our numerical results. For all simulations we set 𝛿B = B0 and s = 5∕3.
The values for the energy range spectral index q are shown in the corresponding table. Some models contain
two scales l∥ and l⊥. The used values for the ratio l⊥∕l∥ are also listed in the corresponding table.

The main aim of the current section is to explore the rigidity dependence of the parallel and perpendicular
mean free paths, respectively. However, to ensure that we indeed obtain diffusive transport, we also show the
(running) diffusion coefficients versus time. In Figure 1 we have shown the parallel diffusion coefficient versus
the dimensionless time Ωt for R = 1. Clearly, the diffusion parameters become constant in time after the
well-known initial ballistic regime. Therefore, we conclude that transport is indeed diffusive for the considered

Figure 4. The perpendicular mean free paths from the Hussein and Shalchi simulations. Shown are the results obtained
for slab/2-D turbulence (dotted line), isotropic turbulence (solid line), Goldreich-Sridhar turbulence (dashed line), and
NRMHD turbulence (dash-dotted line).
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Figure 5. The ratio 𝜆⊥∕𝜆∥ from the Hussein and Shalchi simulations. Shown are the results obtained for slab/2-D
turbulence (dotted line), isotropic turbulence (solid line), Goldreich-Sridhar turbulence (dashed line), and NRMHD
turbulence (dash-dotted line).

cases. Figure 2 shows the perpendicular diffusion coefficient versus time. Again, we find diffusive transport
after the ballistic regime.

In Figure 3 we show the parallel mean free paths for the different turbulence models except the noisy slab
model which is discussed separately (see below). All quantities are normalized with respect to L which stands
for the corresponding turbulence scale (e.g., L = l0 for isotropic turbulence). In all cases the parallel diffusion
coefficient increases with increasing rigidity. The rigidity dependence is approximately the same in each case,
and only the absolute values are slightly different. The only exception is the parallel mean free path obtained
for the NRMHD model which is clearly larger at high rigidities. We would like to point out that in this par-
ticular turbulence model, there is no turbulence for certain parallel wave numbers. Therefore, there is often
no gyroresonant interaction between the energetic particles and magnetic fields. This could explain the dif-
ferences between the parallel diffusion coefficients shown in Figure 3. The analytical investigation of parallel
diffusion in NRMHD turbulence will be subject of future work.

The perpendicular mean free paths for the different turbulence models are visualized in Figure 4. Again, we
obtain similar results for all considered models. In all cases the perpendicular mean free path increases with
rigidity if the latter parameter is small. For high rigidities the perpendicular mean free paths become rigidity
independent as already predicted analytically in Shalchi [2014] and Shalchi [2015]. In this case the perpen-
dicular diffusion coefficient approaches asymptotically the so-called field line random walk limit. We like to
emphasize that 𝛿Bz ≠ 0 for isotropic and Goldreich-Sridhar turbulence, whereas 𝛿Bz = 0 for the other models.
This could cause a difference in the perpendicular diffusion coefficient.

Figure 6. The perpendicular mean free paths 𝜆⊥∕L versus the parallel mean free paths 𝜆∥∕L from the Hussein and
Shalchi simulations. Shown are the results obtained for slab/2-D turbulence (dotted line), isotropic turbulence (solid
line), Goldreich-Sridhar turbulence (dashed line), and NRMHD turbulence (dash-dotted line).
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Figure 7. The perpendicular mean free paths 𝜆⊥∕l∥ versus the parallel mean free paths 𝜆∥∕l∥ for noisy slab turbulence.
Shown are the simulations obtained by employing the Hussein and Shalchi code (diamonds) and the analytical results
(dotted line) represented by equation (29). For the sake of comparison we have also shown the simulations for slab/2-D
turbulence (crosses).

In Figure 5 we show the ratio 𝜆⊥∕𝜆∥ for the different turbulence models. For low rigidities the ratio 𝜆⊥∕𝜆∥ is
approximately constant as expected (see again Shalchi [2014] and Shalchi [2015]). Rigidity dependence and
magnitude of the perpendicular mean free path depend only weakly on the chosen turbulence model. An
exception is the NRMHD model where the parallel diffusion coefficient is different compared to the other
models. A possible explanation for that difference is provided above.

A direct relation between parallel and perpendicular mean free paths is predicted by the UNLT theory of
Shalchi [2010] where the rigidity does not explicitly enter the corresponding integral equation. Therefore, we
show the perpendicular mean free path versus the parallel mean free path for the different turbulence mod-
els in Figure 6. As predicted by the aforementioned theory, we find 𝜆⊥ ∼ 𝜆∥ for short parallel mean free path
and 𝜆⊥ = const for long parallel mean free path.

So far, we did not discuss the noisy slab model. The reason is that this model provides very different results if
it comes to the perpendicular diffusion coefficient. This difference was already predicted analytically by the
UNLT theory [see Shalchi, 2015]. The latter theory states that in the limit𝜆∥∕l∥ → 0 and for small Kubo numbers,
the ratio of the two mean free paths is given by

𝜆⊥
𝜆∥

=

[
𝜋

2
C(s)a2

l∥
l⊥

𝛿B2

B2
0

]2

(28)

for the noisy slab model. In the current paper we set l∥∕l⊥ = 0.5, 𝛿B2∕B2
0 = 1, a2 = 1, and s = 5∕3 leading to

C(s = 5∕3) ≈ 0.12. In this case equation (28) provides 𝜆⊥∕𝜆∥ ≈ 9 × 10−3. For the limit 𝜆∥∕l∥ → ∞ and small

Figure 8. The ratio 𝜆⊥∕𝜆∥ versus the parallel mean free paths 𝜆∥∕l∥ for noisy slab turbulence. Shown are the simulations
obtained by employing the Hussein and Shalchi code (diamonds) and the analytical results (dotted line) represented by
equation (28). For the sake of comparison we have also shown the simulations for slab/2-D turbulence (crosses).
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Figure 9. The mean free paths for slab/2-D turbulence. Shown are the parallel mean free paths from the Hussein and
Shalchi simulations (dotted line) and PADIAN simulations (solid line) as well as the perpendicular mean free paths from
the Hussein and Shalchi simulations (dashed line) and PADIAN simulations (dash-dotted line).

Kubo numbers we expect to find the quasi-linear scaling (see again Shalchi [2015]) and the perpendicular
mean free path is given by

𝜆⊥
l∥

= 3𝜋
2

C(s)a2 𝛿B2

B2
0

(29)

for noisy slab turbulence. For the parameter values used in the current paper (see above), this becomes
𝜆⊥∕l∥ ≈ 0.57. In Figures 7 and 8 we show these two analytical limits together with the simulations. We can see
that the analytical results are perfectly in agreement with the simulations. According to Table 6 we find that
the parallel mean free path is similar compared to the other turbulence models. The ratio 𝜆⊥∕𝜆∥, however, is
much smaller for noisy slab turbulence as predicted and explained in Shalchi [2015].

5. Testing Our Results by Using the PADIAN Code

To check the validity and accuracy of the results presented in the previous section, we perform test particle
simulations also by using a different code. In Tautz [2010] the so-called PADIAN code was developed. This
code is similar compared to the code described above. A major difference between the two codes is that
for three-dimensional turbulence the PADIAN code still uses a single sum, whereas a double sum is used in
the Hussein and Shalchi code. A single sum can be realized by first determining the two-dimensional sur-
face element of the unit sphere. This is obtained from the distances between the randomly chosen angles in
equation (19). By sorting the combinations into a matrix with increasing values in the rows and columns, the

Figure 10. The mean free paths for isotropic turbulence. Shown are the parallel mean free paths from the Hussein and
Shalchi simulations (dotted line) and PADIAN simulations (solid line) as well as the perpendicular mean free paths from
the Hussein and Shalchi simulations (dashed line) and PADIAN simulations (dash-dotted line).
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Figure 11. The mean free paths for Goldreich-Sridhar turbulence. Shown are the parallel mean free paths from the
Hussein and Shalchi simulations (dotted line) and PADIAN simulations (solid line) as well as the perpendicular mean free
paths from the Hussein and Shalchi simulations (dashed line) and PADIAN simulations (dash-dotted line).

distances between neighboring numbers—and thus the two-dimensional volume elements—can be calcu-

lated. While this approach certainly does not “fill” the surface with values, it is nevertheless a viable alternative

to the double sum introduced in equation (23).

Again, we compute the different diffusion coefficients and compare the numerical findings with the results

obtained above. In Tables 2–5 we summarize the PADIAN results for the individual turbulence models. In

Figure 9 we compare the parallel and perpendicular mean free paths obtained from the two different sim-

ulations for two-component turbulence. Obviously, we find an almost perfect agreement confirming the

validity of our numerical work. In Figure 10 the same comparison is shown but for isotropic turbulence.

Again, the agreement obtained by using the two different numerical tools is almost perfect. For anisotropic

three-dimensional models such as Goldreich-Sridhar turbulence or NRMHD turbulence, it is more difficult

to perform test particle simulations, and in this case, there is a major technical difference between the two

codes. As described above, the Hussein and Shalchi code uses a double sum, whereas the PADIAN code is

still using a single sum as in the case of reduced dimensionality. In Figure 11 we compare our results for

the Goldreich-Sridhar model and Figure 12 for the NRMHD model. We can see that the results are very close

although not as close as before. Still the agreement allows us to conclude that our numerical findings are accu-

rate. Furthermore, it seems to be possible to perform the simulations by using a single instead of a double

sum even if the turbulence is three dimensional.

Figure 12. The mean free paths for NRMHD turbulence. Shown are the parallel mean free paths from the Hussein and
Shalchi simulations (dotted line) and PADIAN simulations (solid line) as well as the perpendicular mean free paths from
the Hussein and Shalchi simulations (dashed line) and PADIAN simulations (dash-dotted line).
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6. Summary and Conclusion

We studied the transport of energetic particles interacting with magnetic turbulence. In order to compute
diffusion parameters describing the transport, one has to specify the properties of the magnetic correla-
tion tensor. In the current paper we calculated spatial diffusion coefficients for different turbulence models,
namely, the slab/2-D composite model, isotropic turbulence, a model based on Goldreich and Sridhar [1995]
scaling, the NRMHD model of Ruffolo and Matthaeus [2013], and a noisy slab model. For all those models we
computed the parallel mean free path 𝜆∥, the perpendicular mean free path 𝜆⊥, and the ratio 𝜆⊥∕𝜆∥.

We have shown that for all considered turbulence models, the diffusion coefficients have a similar rigidity
dependence and only the absolute values of the diffusion coefficients are different. This conclusion is in agree-
ment with the analytical findings obtained in Shalchi [2014] and Shalchi [2015] based on the UNLT theory. The
latter theory predicts that the perpendicular diffusion coefficient is directly proportional to the parallel diffu-
sion coefficient for small rigidities and becomes rigidity independent for higher rigidities. This is exactly what
we found numerically in the current paper (see Figures 4–8). According to our present work, the influence
of detailed turbulence properties on the rigidity dependence is minor. As already proposed in Shalchi [2014]
and Shalchi [2015], only fundamental properties of turbulence such as the length scales and magnetic fields
control the diffusion coefficients. As argued in Shalchi [2015], the important quantity controlling the trans-
port is the Kubo number. If the latter number is extreme, the diffusion parameters are extreme as well. This is
in particular the case for models with reduced dimensionality such as the slab or the two-dimensional model.
Of course, the statements made in the current paper do not apply for such turbulence models.

In the current paper we have only explored particle transport for certain parameter regimes (e.g., we have
assumed that 𝛿B = B0). Analytical theories (see again Shalchi [2015]) predict that perpendicular diffusion
does only depends on the parallel diffusion coefficient and the Kubo number. The latter number is directly
proportional to the ratio 𝛿B∕B0. Therefore, we expect that changing the magnetic field ratio will have a strong
influence on the magnitudes of the two diffusion parameters. However, qualitatively, the diffusion parameters
should be similar for weak turbulence (e.g., for 𝛿B∕B0 = 0.1 or 𝛿B∕B0 = 0.3). The latter statement is supported
by the numerical work presented in Hussein and Shalchi [2014a] where the influence of the magnetic field
ratio on the transport had been explored.

To explore the influence of turbulence on the diffusion coefficients of energetic particles was also subject of
previous work [see, e.g., Giacalone and Jokipii, 1999; Sun and Jokipii, 2011]. The numerical results presented in
this previous work are similar compared to our findings. However, we have added more turbulence models
(e.g., the NRMHD model), and we have used a more appropriate spectrum at large scales to ensure that all
fundamental scales of turbulence (e.g., the ultrascale) are finite.

For the first time we have explored numerically transport of particles in noisy slab turbulence. For this
particular turbulence model we found a very small ratio 𝜆⊥∕𝜆∥ in perfect agreement with the results obtained
in Shalchi [2015]. Once more the UNLT theory is confirmed by numerical work.

To double check our findings and to estimate how accurate our numerical results are, we have employed
a second test particle code, namely, the so-called PADIAN code originally developed in Tautz [2010]. We
have shown that this second code provides similar results. Only small variations can be found if the results
provided by the two codes are compared with each other. Therefore, we conclude that our numerical findings
are correct and accurate enough to draw conclusions concerning the influence of turbulence on the transport
of energetic particles.
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