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Abstract We investigate test-particle diffusion in dynami-
cal turbulence based on a numerical approach presented be-
fore. For the turbulence we employ the nonlinear anisotropic
dynamical turbulence model which takes into account wave
propagation effects as well as damping effects. We com-
pute numerically diffusion coefficients of energetic particles
along and across the mean magnetic field. We focus on tur-
bulence and particle parameters which should be relevant for
the solar system and compare our findings with different in-
terplanetary observations. We vary different parameters such
as the dissipation range spectral index, the ratio of the tur-
bulence bendover scales, and the magnetic field strength in
order to explore the relevance of the different parameters.
We show that the bendover scales as well as the magnetic
field ratio have a strong influence on diffusion coefficients
whereas the influence of the dissipation range spectral index
is weak. The best agreement with solar wind observations
can be found for equal bendover scales and a magnetic field
ratio of δB/B0 = 0.75.

Keywords Diffusion · Magnetic fields · Turbulence

1 Introduction

It is well-known that magnetic turbulence influences the mo-
tion of electrically charged energetic particles such as cos-
mic rays. Turbulence in general has different properties such
as the spectrum describing how the magnetic energy is dis-
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tributed among different length scales. Another fundamental
aspect of turbulence is spectral anisotropy describing how
magnetic turbulence varies in different directions of space.
Diffusion of particles along the mean magnetic field, for in-
stance, is controlled by gyro-resonant interactions (see, e.g.,
Schlickeiser 2002 and Shalchi 2009 for reviews). Therefore,
the spectrum of turbulence at a certain scale or wavenumber
determines the diffusion coefficient of the energetic parti-
cles with a certain energy. It should be emphasized, how-
ever, that nonlinear effects can be important for parallel dif-
fusion and non-resonant interactions can influence the dif-
fusion parameter in certain parameter regimes (see Shalchi
2009 for a review). Spectral anisotropy can also have an ef-
fect but this effect is weaker than originally thought (see
Hussein et al. 2015). For perpendicular diffusion, however,
the details of the turbulence seem to be less important be-
cause the perpendicular diffusion coefficient depends only
on the so-called Kubo number and the parallel diffusion co-
efficient (see Shalchi 2015). Due to the latter dependence,
however, the perpendicular diffusion parameter indirectly
also depends on spectrum and spectral anisotropy.

Another important turbulence property is the dynam-
ics describing the characteristic time scales over which the
turbulent magnetic field decorrelates. Different approaches
have been proposed in the past to model the turbulence dy-
namics. Some attempts are based on plasma wave propaga-
tion models in which the propagation effect itself is taken
into account as well as various damping effects (see again
Schlickeiser 2002 for a review). Or there is the important
work of Bieber et al. (1994) in which simple models have
been proposed to approximate the temporal decorrelation of
turbulence, namely the so-called damping model of dynam-
ical turbulence and the random sweeping model. In the re-
cent years scientists achieved a more complete understand-
ing of the turbulence time scales. Therefore a more advanced
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model for the turbulence dynamics has been proposed in
Shalchi et al. (2006). This model is called the Nonlinear
Anisotropic Dynamical Turbulence (NADT) model and takes
into account wave propagation effects as well as damping ef-
fects. It is the aim of this article to simulate energetic particle
motion in this type of turbulence and to explore the influence
of different turbulence parameters.

It was shown in different papers that dynamical turbu-
lence effects can have a strong influence on the transport
of energetic particles. This concerns parallel diffusion (see,
e.g., Bieber et al. 1994) but also perpendicular diffusion
(see, e.g., Shalchi et al. 2006). Such previous investigations
were based on quasilinear and nonlinear calculations. These
days, however, one can also obtain diffusion parameters
from test-particle simulations. Previous work of this type
was mostly done for magnetostatic turbulence (see, e.g., Gi-
acalone and Jokipii 1999, Qin et al. 2002a, 2002b) or un-
damped propagating plasma waves (see, e.g., Michałek and
Ostrowski 1996 and Tautz and Shalchi 2013). In Hussein
and Shalchi (2016) we have started to simulate test-particle
transport in the dynamical turbulence models used in Bieber
et al. (1994), namely in the damping model of dynamical
turbulence and the random sweeping model. It was shown
in Hussein and Shalchi (2016) that for certain turbulence pa-
rameters we can indeed reproduce different solar wind ob-
servations.

It is the purpose of the current paper to simulate particle
transport in the more realistic NADT model and to compute
the parallel mean free path λ‖, the perpendicular mean free
path λ⊥, and the ratio of the two mean free paths λ⊥/λ‖. As
in Hussein and Shalchi (2016) our findings are compared
with the Palmer (1982) consensus range, observations of Jo-
vian electrons (see Chenette et al. 1977), and Ulysses mea-
surements of Galactic protons (see Burger et al. 2000). We
also explore how the different turbulence parameters influ-
ence the different diffusion parameters.

The reminder of the paper is organized as follows. In
Sect. 2 we explain the physics of turbulence in general but
we focus on the NADT model used in the current paper.
The methodology which is used to perform particle transport
simulations in dynamical turbulence is explained in Sect. 3.
In Sect. 4 we show our numerical results obtained for paral-
lel and perpendicular diffusion coefficients and we compare
them with different solar wind observations. In Sect. 5 we
conclude and summarize.

2 Dynamical turbulence

2.1 Description of magnetic turbulence

In the analytical description of turbulence, the fundamental
quantity is the magnetic correlation tensor in the wave vector
space. The components of the latter tensor are defined via

Pmn(�k, t) = 〈
δBm(�k, t)δB∗

n(�k,0)
〉

(1)

where we have used the ensemble average operator 〈. . .〉.
A standard assumption in the theory of dynamical turbu-
lence is that all tensor components obey the same temporal
behavior and, therefore, they can be written as

Pmn(�k, t) = Pmn(�k)Γ (�k, t). (2)

Here we have used the magnetostatic tensor components
Pmn(�k) and the dynamical correlation function Γ (�k, t). In
the current paper we employ the NADT model in order to
approximate the function Γ (�k, t). Before we discuss this
model in detail, we focus on the static tensor components.

2.2 Two-component turbulence

The slab/2D composite model is widely used in the trans-
port theory of energetic particles (see, e.g., Bieber et al.
1994, 1996). In the current paper we employ this model,
which is also known as two-component model, as it was
already done in Hussein and Shalchi (2016). This type of
turbulence description is supported by observations in the
solar wind (see, e.g., Matthaeus et al. 1990; Osman and Hor-
bury 2009a, 2009b; Turner et al. 2012), turbulence simula-
tions (see, e.g., Oughton et al. 1994; Matthaeus et al. 1996;
Shaikh and Zank 2007) as well as analytical treatments of
turbulence (see, e.g., Zank and Matthaeus 1993). More de-
tails concerning the used model can be found in the afore-
mentioned articles or in the corresponding diffusion the-
ory papers (see, e.g., Hussein et al. 2015 and Hussein and
Shalchi 2016).

Within the two-component approximation, the compo-
nents of the static correlation tensor are written as

Pmn = P slab
mn + P 2D

mn (3)

where we have used the components of the slab tensor

P slab
mn (�k) = gslab(k‖)

δ(k⊥)

k⊥
δmn, (4)

and the components of the two-dimensional tensor

P 2D
mn (�k) = g2D(k⊥)

δ(k‖)
k⊥

(
δmn − kmkn

k2⊥

)
, (5)

with m,n = x, y. Furthermore, we have Pmz = Pzn = Pzz =
0 in both cases due to δBz = 0. For the two-dimensional
modes, the latter assumption is motivated by the fact that in
the solar wind the power in parallel fluctuations is small in
the inertial range (see Belcher and Davis 1971). For the slab
modes δBz = 0 is a consequence of the solenoidal constraint
∇ · �B = 0.

In Eqs. (4) and (5) we have used the slab spectrum
gslab(k‖) as well as the two-dimensional (2D) spectrum
g2D(k⊥), respectively. For the former spectrum we employ
the form
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gslab(k‖) = C(s)

2π
lslabδB

2
slab

×
{

(1 + k2‖ l2
slab)

−s/2 if k‖ ≤ kd

(1 + k2
d l2

slab)
−s/2(kd/k‖)p if k‖ ≥ kd

(6)

as proposed in Bieber et al. (1994). Here we have used the
slab bendover scale lslab , the dissipation wavenumber kd ,
the inertial range spectral index s, and the dissipation range
spectral index p. Furthermore, we have employed the nor-
malization function

C(s) = Γ ( s
2 )

2
√

πΓ ( s−1
2 )

(7)

with the Gamma function Γ (z). The spectrum is correctly
normalized as long as s > 1.

For the two-dimensional spectrum we use an extension
of the model proposed by Bieber et al. (1994). By combin-
ing the spectrum used in the latter paper with the ideas dis-
cussed in Matthaeus et al. (2007) and Shalchi and Weinhorst
(2009), we propose the form

g2D(k⊥) = 2D(s, q)

π
l2DδB2

2D

×
⎧
⎨

⎩

(k⊥l2D)q

(1+k2⊥l22D)(s+q)/2 if k⊥ ≤ kd

(kd l2D)q

(1+k2
d l22D)(s+q)/2 (

kd

k⊥ )p if k⊥ ≥ kd .
(8)

The only parameter which is different compared to the slab
spectrum, is the energy range spectral index q controlling
the spectral shape at large turbulence scales. Furthermore,
we have used the extended normalization function

D(s, q) = Γ (
s+q

2 )

2Γ (s−1
2 )Γ (

q+1
2 )

(9)

with s > 1 and q > −1. Equations (7) and (9) are linked via
C(s) = D(s, q = 0). In Tables 1 and 2 we list the values we
have used in our simulations for the different turbulence and
particle parameters. In Fig. 1 we visualize the used spectra
for slab and two-dimensional modes, respectively.

A special aspect of the two-component model used here
is that we assume that there are no fluctuations parallel to
the mean field δBz = 0. More recent observations (see, e.g.,
Alexandrova et al. 2008) and numerical simulations (see,
e.g., Howes et al. 2008) show an increased level of magnetic
compressibility at small scales. In Hussein et al. (2015) the
influence of different magnetostatic turbulence models on
the parallel and perpendicular diffusion coefficients was ex-
plored numerically. No strong influence was found indicat-
ing that a non-vanishing turbulent field in the parallel direc-
tion is less important. However, the latter statement is not
true for very strong turbulence in which the turbulent field is
much stronger than the mean field (see Hussein and Shalchi
2014). In such cases we find isotropic diffusion meaning
that the parallel and perpendicular diffusion coefficients are
equal.

Table 1 The parameter values used for our test-particle simulations.
The values should be appropriate in the interplanetary space at 1 AU
heliocentric distance (see, e.g., King 1989)

Parameter Symbol Value

2D energy range spectral index q 2

2D inertial range spectral index s2D 5/3

Alfvén speed vA 33.5 km/s

Slab bendover scale lslab 0.030 AU

Slab dissipation wavenumber kslab
d 3 × 105 1/AU

Mean magnetic field B0 4.12 nT

Slab fraction δB2
slab 0.2 δB2

2D fraction δB2
2D 0.8 δB2

Table 2 The different runs performed in the current paper and the
values used for the relative turbulence strength δB/B0, the slab inertial
range spectral index sslab , the dissipation range spectral index p, the
ratio of the two bendover scales l2D/lslab , and the two-dimensional
dissipation wavenumber k2D

d /kslab
d

Section δB/B0 sslab p l2D/lslab k2D
d /kslab

d Figures

4.1 1 5/3 3 1 1 2–4

4.2 0.5 5/3 3 1 1 5–7

4.3 0.75 5/3 3 1 1 8–10

4.4 0.5 5/3 3, 4, 5 1 1 11–13

4.5 0.5 5/3 3 0.1 1 14–16

4.6 0.75 2 3 1 10 17–19

4.7 0.75 2 3 1 10 20–22

Fig. 1 The spectra used in the current paper for the slab modes (q = 0)
and the two-dimensional modes (q = 2)

Furthermore, the turbulence model used in the current
paper is axi-symmetric with respect to the mean magnetic
field. Observations (see, e.g., Saur and Bieber 1999 and
Narita et al. 2010) and numerical simulations (see, e.g.,
Dong et al. 2014) have shown that solar wind turbulent spec-
tra are not axi-symmetric. If deviations from axi-symmetry
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are taken into account, the whole diffusion tensor needs to
be computed (see, e.g., Weinhorst et al. 2008). It will be sub-
ject of future work to present a detailed numerical investiga-
tion of test-particle transport in turbulent systems without
axi-symmetry.

2.3 The nonlinear anisotropic dynamical turbulence
model

In order to model dynamical turbulence, one has to spec-
ify the dynamical correlation function Γ (�k, t) in Eq. (2). In
recent years there has been a more complete understanding
of the time scales of turbulence (see, e.g., Matthaeus et al.
1990, Tu and Marsch 1993, Zhou et al. 2004, and Oughton
et al. 2006). Based on this improved understanding, Shalchi
et al. (2006) have developed the NADT model for the func-
tion Γ (�k, t). Within the latter model, we have different dy-
namical correlation functions for slab and two-dimensional
modes, respectively.

For the corresponding function of the slab modes we have
according to Shalchi et al. (2006)

Γ slab(k‖, t) = eiωpt−βt (10)

where we have used the constant

β = √
2α

vA

l2D

δB2D

B0
(11)

and the plasma wave dispersion relation of shear Alfvén
waves

ωp = jvAk‖. (12)

Obviously one finds an oscillating factor in Eq. (10) de-
scribing wave propagation effects. The parameter j used
in Eq. (12) indicates the wave propagation direction. Here
j = +1 is used for forward and j = −1 for backward to
the ambient magnetic field propagating waves. One would
expect that closer to the sun the most waves should prop-
agate forward and far away from the sun the wave inten-
sities should be equal for both directions (see, e.g., Bavas-
sano 2003 for more details). In the current paper we are in-
terested in turbulence parameters at 1 AU heliocentric dis-
tance and, thus, we assume that all waves propagate forward
and we set j = +1. The exponential factor in Eq. (10) con-
tains the decorrelation time scale τ = 1/β where β is given
by Eq. (11). The slab component in our model is assumed
to experience resonant nonlinear triad interactions with the
low-frequency two-dimensional component. Therefore, the
time τ is given by the global two-dimensional nonlinear
timescale. The parameter α in Eq. (11) is a constant of order
one related to the so-called Karman-Taylor constant and vA

is the Alfvén speed. In the current paper we set α = 1 for
simplicity.

For the two-dimensional modes we have according to
Shalchi et al. (2006)

Γ 2D(k⊥, t) = e−γ t (13)

where we have used

γ = γ (k⊥) = β

{
1 for k⊥l2D ≤ 1
(k⊥l2D)2/3 for k⊥l2D ≥ 1

(14)

with the constant β defined already in Eq. (11). Obviously
no oscillatory factor appears in Eq. (13). For small perpen-
dicular wavenumbers k⊥, we estimate the correlation time as
above for the slab modes. For large k⊥, however, the decor-
relation time is estimated by using a steady inertial range
k
−5/3
⊥ approximation.

In analytical treatments of the transport, one can directly
use the models described here. As pointed out in Hussein
and Shalchi (2016), this is not the case in test-particle sim-
ulations where a Fourier transformation has to be employed
for the dynamical correlation function. We define

χ(�k,ω) := 1

π
�

∫ ∞

0
dtΓ (�k, t)e−iωt . (15)

Using χ(�k,ω) instead of Γ (�k, t) means that we describe the
turbulence in a four-dimensional Fourier space with the co-
ordinates �k and ω.

In the NADT model, the dynamical correlation function
for the slab modes is given by Eq. (10). Therefore, we find

χslab(�k,ω) := 1

π

β

β2 + (ω − ωp)2
(16)

where ωp = ωp(�k) is given by Eq. (12). For the two-
dimensional modes, the dynamical correlation function is
given by Eq. (13) and, thus

χ2D(�k,ω) := 1

π

γ

γ 2 + ω2
(17)

where γ = γ (�k) is given by Eq. (14).
In the next section we explain our numerical approach

and in Sect. 4 we show the results for the turbulence model
described here.

3 Methodology

We simulate particle transport in dynamical turbulence
based on the method described in Hussein and Shalchi
(2016). The first step is the creation of turbulence by using
the formula

δ �B(�x, t) = √
2δB

M∑

m=1

N∑

n=1

A(km,ωn)

× �ξmei(�km·�x+ωnt+βmn) (18)

with the random phase βmn. The used method can be seen
as an extension of previous simulations performed for either
magnetostatic turbulence or undamped propagating plasma
waves (see, e.g., Michałek and Ostrowski 1996; Giacalone
and Jokipii 1999, Tautz 2010, and Hussein et al. 2015). In
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the following we describe the parameters and functions used
in Eq. (18).

We create two-component turbulence by employing
Eq. (18) for slab and two-dimensional modes, respectively
and then we add the two obtained magnetic field vectors.
For the slab modes and the two-dimensional modes we use
the same polarization vector �ξm, namely

�ξm = (− sinφm, cosφm,0) (19)

where φm is a random angle.
All quantities used in the code are normalized with re-

spect to the slab bendover scale lslab . This means, for in-
stance, that km used above corresponds to the physical quan-
tity k‖lslab or k⊥lslab and z stands for z/lslab . The fre-
quency ω is normalized with respect to the unperturbed gyro
frequency of the particle Ω = (qB0)/(mcγ ) meaning that
ωn = ω/Ω . Here we have used the electric charge of the par-
ticle q , the rest mass m, the speed of light c, and the Lorentz
factor γ .

In Eq. (18) we have also used �km = kmk̂m with the ran-
dom wave unit vector

k̂m =
⎛

⎝

√
1 − η2

m cosφm√
1 − η2

m sinφm

ηm

⎞

⎠ . (20)

The random angle φm was already used in Eq. (19). What the
value of ηm is depends on the simulated turbulence model.
For the slab modes we have ηm = 1 and for two-dimensional
modes ηm = 0. In Eq. (18) we have also used the amplitude
function

A2(ωn, km) = G(km,ωn)�km�ωn
∑M

μ=1
∑N

ν=1 G(kμ,ων)�kμ�ων

(21)

where G(kμ,ων) represents the space-time spectrum

G(km,ωn) = G(km)χ(km,ωn). (22)

Eqs. (16) and (17) show the functions χ(km,ωn) for the
NADT model. The function G(km) is the usual spectrum as
used in simulations of magnetostatic turbulence (see, e.g.,
Hussein et al. 2015). In the current paper we employ Eq. (6)
for the slab modes and Eq. (8) for the two-dimensional
modes.

In the used model for χ(km,ωn), one finds the Alfvén
speed vA which can be normalized with respect to the parti-
cle speed v so that

vA

v
= vA

c

√
R2

0 + R2

R
. (23)

Here we have used the parameter

R0 = 1

lslabB0

{
0.511 MV for electrons
938 MV for protons,

(24)

and the dimensionless rigidity defined via R = RL/lslab

where RL = v/Ω is the unperturbed Larmor radius. For

lslab = 0.03 AU and B0 = 4.12 nT this gives R0 = 9.2 ×
10−5 for electrons and R0 = 0.169 for protons. All other pa-
rameter values used in our simulations are listed in Tables 1
and 2.

In our test-particle simulations in dynamical turbulence
we have to deal with the same problems one has to deal with
in simulations of static turbulence (see again Hussein et al.
(2015) for more details). For dynamical turbulence, how-
ever, there are a few additional concerns. We need a certain
number of grid points in space and time. For most of our
runs we have set N = M = 256 in Eq. (18). For lower rigidi-
ties we had to set N = M = 64 to avoid too long computa-
tion times. In all runs we have computed running diffusion
coefficients for times up to at least Ωt = 104 (here Ω de-
notes again the unperturbed gyro frequency) to ensure that
we are in the stable regime.

Furthermore, as noted in Hussein and Shalchi (2016), the
value of the minimum frequency ωmin has a strong influence
on the obtained parallel and perpendicular mean free paths.
This influence was noticed for both protons and electrons but
was much stronger for electrons. To avoid this problem, we
performed our simulations for small enough values of ωmin.

Following the ideas presented in Tautz (2010), we also
compute the errors of the different mean free paths. The lat-
ter author noted that using the standard deviation as a mean
of estimating the error is inappropriate as the mean square
displacement calculated in the Monte Carlo code is the vari-
ance of the distribution function for the diffusion equation
itself. In addition, test particles interacting with turbulent
magnetic fields scatter in a random manner leading to a huge
variance in their square deviation. Hence one has to come
up with a method that takes into account the averaging pro-
cesses used over the number of turbulence manifestations,
NT , for each of which a fixed number of test particles were
simulated in space and time resulting a diffusion coefficient.
The mean error is then defined to be the deviation of the dif-
ferent mean free paths λn from the final averaged mean free
path λf . Mathematically this reads

σ 2
λ = 1

NT − 1

×
{

NT∑

n=0

(λn − λf )2 − 1

NT

[
NT∑

n=0

(λn − λf )

]2}

. (25)

Using Eq. (25), both the error in parallel and perpendicu-
lar mean free paths where calculated, �λ‖ and �λ⊥ respec-
tively. To calculate the error in the ratio of the two mean free
paths, λ⊥/λ‖, we use the rule of error combination

�

(
λ⊥
λ‖

)
=

(
�λ⊥
λ⊥

+ �λ‖
λ‖

)
λ⊥
λ‖

. (26)

In most plots shown in Sect. 4 we have included the error
bars based on the method presented here.
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Fig. 2 The parallel mean free path versus magnetic rigidity for two–
component turbulence, the NADT model, and δB/B0 = 1.0. The
shaded band represents the Palmer (1982) consensus range

4 Results

In Tables 1 and 2 we show the different parameters used in
our simulation runs. In the following we vary the magnetic
field ratio δB/B0, the dissipation range spectral index p,
the ratio of the bendover scales l2D/lslab , the inertial range
spectral index of the slab modes sslab , as well as the dissi-
pation wavenumber of the two-dimensional modes k2D

d .

4.1 Slab/2D turbulence with δB/B0 = 1.0

Often one assumes that the ratio of turbulent and mean mag-
netic field is δB/B0 = 1.0 (see, e.g., Bieber et al. 1994,
1996). Furthermore, we assume equal turbulence bendover
scales l2D = lslab and set the dissipation range spectral in-
dex to p = 3. We vary the particle rigidity from usually a few
percent megavolt up to about 50 gigavolt. We compute the
parallel mean free path, the perpendicular mean free path, as
well as the ratio of the two diffusion parameters λ⊥/λ‖. Our
numerical findings are visualized in Figs. 2, 3, and 4. All re-
sults are compared with different measurements performed
in the solar system.

Qualitatively, our results are similar compared to the sim-
ulations presented in Hussein and Shalchi (2016) which
were obtained for the damping model of dynamical tur-
bulence and the random sweeping model. As in previous
work we conclude that the obtained parallel mean free paths
are too small compared to the Palmer (1982) consensus
range. Therefore, we change different parameters in our test-
particle code to explore their influence on the different dif-
fusion parameters. This is done in the following paragraphs.

4.2 Slab/2D turbulence with δB/B0 = 0.5

In Hussein and Shalchi (2016) it was shown that the sim-
ulated parallel mean free path is too small if the magnetic

Fig. 3 The perpendicular mean free path versus magnetic rigidity for
two-component turbulence, the NADT model, and δB/B0 = 1.0. For
comparison we show observations of Jovian electrons (Chenette et al.
1977, star), Ulysses measurements of Galactic protons (Burger et al.
2000, dots), and the Palmer (1982) value (horizontal line)

Fig. 4 The ratio of perpendicular and parallel mean free paths ver-
sus magnetic rigidity for two-component turbulence, the NADT model,
and δB/B0 = 1.0. The shaded band represents the Palmer (1982) con-
sensus range

field ratio is assumed to be δB/B0 = 1. Therefore, the latter
ratio was changed to δB/B0 = 0.5 as suggested in Ruffolo
et al. (2012). In the current paragraph we do the same in the
context of the NADT model and we show our findings for
the different diffusion parameters in Figs. 5, 6, and 7.

As expected we find an increased parallel mean free path
but a smaller perpendicular mean free path. The former
transport coefficient goes directly through the Palmer (1982)
consensus range confirming that we can indeed reproduce
solar wind observations of energetic particles numerically.
The perpendicular diffusion coefficients, however, are now
too small. The same applies for the ratio of the two diffusion
parameters λ⊥/λ‖.
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Fig. 5 Caption is exactly as in Fig. 2 but results were obtained for
δB/B0 = 0.5

Fig. 6 Caption is exactly as in Fig. 3 but results were obtained for
δB/B0 = 0.5

4.3 Slab/2D turbulence with δB/B0 = 0.75

Above we have performed the simulations for the mag-
netic field ratios δB/B0 = 1 and δB/B0 = 0.5. According to
Fig. 2 the parallel mean free path is too short for δB/B0 = 1.
For a reduced magnetic field ratio of δB/B0 = 0.5 the par-
allel mean free path is much larger but is still within the
Palmer (1982) consensus range (see Fig. 5). In the current
paragraph we show the simulations performed for an in-
termediate turbulence level of δB/B0 = 0.75. The obtained
diffusion parameters are visualized in Figs. 8, 9, and 10.

As expected, the parallel mean free path for electrons is
now perfectly inside the box representing the solar wind ob-
servations. The perpendicular mean free path as well as the
ratio of the two diffusion coefficients is close to the different
observations as well. Obviously, the magnetic field ratio is
a critical parameter controlling both spatial diffusion coef-
ficients. This is exactly what one expects and what is also
predicted by analytical investigations of the transport (see,

Fig. 7 Caption is exactly as in Fig. 4 but results were obtained for
δB/B0 = 0.5

Fig. 8 Caption is exactly as in Fig. 2 but results were obtained for
δB/B0 = 0.75

e.g., Shalchi 2009 and Shalchi 2015). For δB/B0 = 0.75 we
find the best agreement between simulations and observa-
tions.

4.4 Influence of the dissipation range spectral index

Above, as well as in Hussein and Shalchi (2016), the dissipa-
tion range spectral index was set to p = 3. This is a numer-
ical value which is close to solar wind observations of mag-
netic turbulence (see, e.g., Denskat and Neubauer 1982). It is
expected that the smallest scales of turbulence, correspond-
ing to the dissipation range, influence the parallel mean free
path at low rigidities due to the gyroresonant interactions
between particles and turbulence.

In Figs. 11, 12, and 13 we show the diffusion parame-
ters for p = 3, p = 4, and p = 5. Obviously there is almost
no influence of the dissipation range spectral index on the
considered transport parameters.
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Fig. 9 Caption is exactly as in Fig. 3 but results were obtained for
δB/B0 = 0.75

Fig. 10 Caption is exactly as in Fig. 4 but results were obtained for
δB/B0 = 0.75

4.5 Influence of the two-dimensional bendover scale

Another parameter which can be changed in our simulations,
is the bendover scale of the two-dimensional modes l2D .
The latter parameter denotes the turnover from the interme-
diate scales of the inertial range to the large scales of the
energy range. Originally it was assumed that l2D = 0.1lslab ,
at least in the context of test-particle calculations (see again
Bieber et al. 1994). In recent years, the ratio of the two
bendover scales was changed to l2D = lslab (see, e.g., Hus-
sein and Shalchi 2016) and this is what we have used
above.

In Figs. 14, 15, and 16 we show diffusion parameters for
l2D = 0.1lslab . We can see that the parallel mean free path as
well as the perpendicular mean free path are drastically re-
duced due to the smaller values of l2D . Clearly we find that
the perpendicular mean free path is far away from the dif-
ferent interplanetary measurements. The parallel mean free

Fig. 11 The parallel mean free path versus magnetic rigidity for two–
component turbulence, the NADT model, and δB/B0 = 0.5. We have
shown results for different values of the dissipation range spectral in-
dex p. The shaded band represents the Palmer (1982) consensus range

Fig. 12 The perpendicular mean free path versus magnetic rigidity for
two-component turbulence, the NADT model, and δB/B0 = 0.5. We
have shown results for different values of the dissipation range spec-
tral index p. For comparison we show observations of Jovian electrons
(Chenette et al. 1977, star), Ulysses measurements of Galactic protons
(Burger et al. 2000, dots), and the Palmer (1982) value (horizontal line)

path, however, is now directly in the Palmer (1982) consen-
sus range. The ratio λ⊥/λ‖ is too small as well.

4.6 Influence of the dissipation scales

Simulations of MHD turbulence in presence of a mean field
display anisotropic power in the parallel and perpendicular
direction. In simulations the dissipative range is reached at
different scales. The measure of the two-dimensional corre-
lations and of the Taylor scale in the solar wind (see Wey-
gand et al. 2011) also support the existence of different dis-
sipative scales in the parallel and perpendicular directions.
This corresponds to different dissipation wavenumbers k2D

d

and kslab
d .
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Fig. 13 The ratio of perpendicular and parallel mean free paths ver-
sus magnetic rigidity for two-component turbulence, the NADT model,
and δB/B0 = 0.5. We have shown results for different values of the dis-
sipation range spectral index p. The shaded band represents the Palmer
(1982) consensus range

Fig. 14 The parallel mean free path versus magnetic rigidity for two–
component turbulence, the NADT model, and δB/B0 = 0.5. We have
shown results for different values of the two-dimensional bendover
scale l2D . The shaded band represents the Palmer (1982) consensus
range

In order to test the influence of the dissipation scales on
the diffusion of energetic particles, we repeat one set of sim-
ulations with a higher value of the dissipation wavenum-
ber of the two-dimensional modes k2D

d . Above we have
used kd = 3 × 1051/AU in all of our simulations for both
slab and the two-dimensional modes. We redo the set with
δB/B0 = 0.75, l2D = lslab , and p = 3 keeping the slab dis-
sipation wavenumber as is but use k2D

d = 3×1061/AU . Fig-
ures 17, 18, and 19 show the parallel mean free path, the per-
pendicular mean free path, and the ratio of the two mean free
paths as function of rigidity for the different values of k2D

d .
Clearly, the value of k2D

d has no noticeable influence on the
transport parameters.

Fig. 15 The perpendicular mean free path versus magnetic rigidity for
two-component turbulence, the NADT model, and δB/B0 = 0.5. We
have shown results for different values of the two-dimensional ben-
dover scale l2D . For comparison we show observations of Jovian elec-
trons (Chenette et al. 1977, star), Ulysses measurements of Galactic
protons (Burger et al. 2000, dots), and the Palmer (1982) value (hori-
zontal line)

Fig. 16 The ratio of perpendicular and parallel mean free paths ver-
sus magnetic rigidity for two-component turbulence, the NADT model,
and δB/B0 = 0.5. We have shown results for different values of the
two-dimensional bendover scale l2D . The shaded band represents the
Palmer (1982) consensus range

4.7 Influence of the inertial range spectral index

In the local description of turbulence the parallel and per-
pendicular spectral indexes differ substantially (see, e.g.,
Goldreich and Sridhar 1995, Cho and Vishniac 2000, and
Boldyrev 2005) and this has been confirmed by solar wind
measurements (see, e.g., Horbury et al. 2008). To test the
influence of a varying inertial range spectral index s on
the transport of energetic particles, we perform one set of
simulations with sslab = 2 for the slab modes and keep
s2D = 5/3 for the two-dimensional modes. As before, we
use δB/B0 = 0.75, l2D = lslab , and p = 3. Figures 20, 21,
and 22 show the parallel mean free path, the perpendicular



 308 Page 10 of 12 M. Heusen, A. Shalchi

Fig. 17 The parallel mean free path versus magnetic rigidity for
composite turbulence using the NADT model with δB/B0 = 0.75,
l2D/lslab = 1.0, and p = 3 for different values of k2D

d . The shaded
band represents the Palmer (1982) consensus range

Fig. 18 The perpendicular mean free path versus magnetic rigidity
for composite turbulence using the NADT model with δB/B0 = 0.75,
l2D/lslab = 1.0 and p = 3 for different values of k2D

d . We show obser-
vations of Jovian electrons (star), Ulysses measurements of Galactic
protons (dots), and the Palmer (1982) value (horizontal line)

mean free path, and the ratio of the two mean free paths as
function of rigidity for the different values of sslab . Clearly,
a steeper inertial range for the slab modes has no noticeable
influence on the transport parameters.

5 Summary and conclusion

The current paper is a sequel of Hussein and Shalchi (2016)
where we have started to perform test-particle simulations
for dynamical turbulence. The turbulence dynamics can
have a strong influence on particle diffusion coefficients at
low particle rigidities. In the previous work, we have em-
ployed two models for dynamical turbulence, namely the
damping model of dynamical turbulence and the random

Fig. 19 The ratio of perpendicular to parallel mean free paths ver-
sus magnetic rigidity for composite turbulence using the NADT model
with δB/B0 = 0.75, l2D/lslab = 1.0, and p = 3 for different values
of k2D

d . The shaded band represents the Palmer (1982) consensus range

Fig. 20 The parallel mean free path versus magnetic rigidity for
composite turbulence using the NADT model with δB/B0 = 0.75,
l2D/lslab = 1.0, and p = 3 for different values of sslab . The shaded
band represents the Palmer (1982) consensus range

sweeping model. Both models were originally proposed in
the pioneering work of Bieber et al. (1994).

It is the purpose of the current paper to replace the afore-
mentioned dynamical turbulence models by the so-called
Nonlinear Anisotropic Dynamical Turbulence (NADT)
model of Shalchi et al. (2006) which takes into account
wave propagation effects as well as damping effects. Fur-
thermore, we perform a detailed parameter study in order
to explore the influence of the magnetic field ratio δB/B0,
the turbulence scale ratio l2D/lslab , the dissipation range
spectral index p, the dissipation wavenumber kd , as well as
the inertial range spectral index s on the parallel mean free
path λ‖, the perpendicular mean free path λ⊥, and the ra-
tio of the two diffusion parameters λ⊥/λ‖. Our findings are
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Fig. 21 The perpendicular mean free path versus magnetic rigidity
for composite turbulence using the NADT model with δB/B0 = 0.75,
l2D/lslab = 1.0 and p = 3 for different values of sslab . We show ob-
servations of Jovian electrons (star), Ulysses measurements of Galactic
protons (dots), and Palmer (1982) value (horizontal line)

Fig. 22 The ratio of perpendicular to parallel mean free paths ver-
sus magnetic rigidity for composite turbulence using the NADT model
with δB/B0 = 0.75, l2D/lslab = 1.0, and p = 3 for different values
of sslab . The shaded band represents the Palmer (1982) consensus
range

shown in Figs. 2–22 and the corresponding parameter values
are listed in Tables 1 and 2.

We found that the influence of the dissipation range spec-
tral index is minor. The influence of the inertial range spec-
tral index and the dissipation scales are negligible as well.
The magnetic field ratio, on the other hand, has a strong
influence on both diffusion coefficients and their ratio. We
found best agreement with the Palmer (1982) consensus
range for δB/B0 = 0.75 (corresponding to approximately
δB2/B2

0 = 0.6) which is between the values δB/B0 = 0.5
and δB/B0 = 1 usually used for this type of work. We also
found that the ratio of the bendover scales l2D/lslab has an
influence on the parallel mean free path and a very strong
influence on the perpendicular diffusion coefficient. This

was predictable because analytical treatments of the trans-
port (see, e.g., Shalchi 2015) show the importance of the
so-called Kubo number on the perpendicular motion of en-
ergetic particles. The latter number depends on the magnetic
field ratio as well as the turbulence scales.

The main conclusion of the current paper is that we
can indeed reproduce different solar wind observations per-
formed for energetic particles interacting with magnetic tur-
bulence if we employ the NADT model. More detailed tur-
bulence measurements would show what the exact value of
the different parameters used in the current paper are. Then
one could draw more conclusions concerning the validity of
the employed turbulence model.

Acknowledgements A. Shalchi acknowledges support by the Natu-
ral Sciences and Engineering Research Council (NSERC) of Canada.
Most simulations shown in this article were obtained by using the na-
tional computational facility provided by WestGrid. We are also grate-
ful to S. Safi-Harb for providing her CFI-funded computational facili-
ties for code tests and for some of the simulation runs presented here.

References

Alexandrova, O., Carbone, V., Veltri, P., Sorriso-Valvo, L.: Astro-
phys. J. 674, 1153 (2008)

Bavassano, B.: AIP Conf. Proc. 679, 377 (2003)
Belcher, J.W., Davis, L. Jr.: J. Geophys. Res. 76, 3534 (1971)
Bieber, J.W., Matthaeus, W.H., Smith, C.W., Wanner, W., Kallenrode,

M.-B., Wibberenz, G.: Astrophys. J. 420, 294 (1994)
Bieber, J.W., Wanner, W., Matthaeus, W.H.: J. Geophys. Res. 101,

2511 (1996)
Boldyrev, S.: Astrophys. J. Lett. 626, L37 (2005)
Burger, R.A., Potgieter, M.S., Heber, B.: J. Geophys. Res. 105, 27447

(2000)
Chenette, D.L., Conlon, T.F., Pyle, K.R., Simpson, J.A.: Astrophys. J.

215, L95 (1977)
Cho, J., Vishniac, E.T.: Astrophys. J. 539, 273 (2000)
Denskat, K.U., Neubauer, F.M.: Observations of hydrodynamic tur-

bulence in the solar wind. In: Neugebauer, M. (ed.) Solar Wind
Five, Proceedings of a Conference Held in Woodstock, Vermont,
November 1–5, 1982. NASA Conference Publication, vol. 2280
pp. 81–91. NASA, Washington (1982).

Dong, Y., Verdini, A., Grappin, R.: Astrophys. J. 793, 118 (2014)
Giacalone, J., Jokipii, J.R.: Astrophys. J. 520, 204 (1999)
Goldreich, P., Sridhar, S.: Astrophys. J. 438, 763 (1995)
Horbury, T.S., Forman, M., Oughton, S.: Phys. Rev. Lett. 101, 175005

(2008)
Howes, G.G., Dorland, W., Cowley, S.C., Hammett, G.W., Quataert, E.,

Schekochihin, A.A., Tatsuno, T.: Phys. Rev. Lett. 100, 065004
(2008)

Hussein, M., Shalchi, A.: Astrophys. J. 785, 31 (2014)
Hussein, M., Tautz, R., Shalchi, A.: J. Geophys. Res. 120, 4095 (2015)
Hussein, M., Shalchi, A.: Astrophys. J. 817, 136 (2016)
King, J.H.: (1989). Interplanetary medium data book, supplement 4,

1985–1988
Matthaeus, W.H., Goldstein, M.L., Roberts, D.A.: J. Geophys. Res. 95,

20673 (1990)
Matthaeus, W.H., Ghosh, S., Oughton, S., Roberts, D.: J. Geophys.

Res. 101, 7619 (1996)



 308 Page 12 of 12 M. Heusen, A. Shalchi

Matthaeus, W.H., Bieber, J.W., Ruffolo, D., Chuychai, P., Minnie, J.:
Astrophys. J. 667, 956 (2007)

Michałek, G., Ostrowski, M.: Nonlinear Process. Geophys. 3, 66
(1996)

Narita, Y., Glassmeier, K.-H., Sahraoui, F., Goldstein, M.L.: Phys. Rev.
Lett. 104, 171101 (2010)

Osman, K.T., Horbury, T.S.: J. Geophys. Res. 114, A06103 (2009a)
Osman, K.T., Horbury, T.S.: Ann. Geophys. 27, 3019 (2009b)
Oughton, S., Priest, E.R., Matthaeus, W.H.: J. Fluid Mech. 280, 95

(1994)
Oughton, S., Dmitruk, P., Matthaeus, W.H.: Phys. Plasmas 13, 042306

(2006)
Palmer, I.D.: Rev. Geophys. Space Phys. 20, 335 (1982)
Qin, G., Matthaeus, W.H., Bieber, J.W.: Geophys. Res. Lett. 29, 1048

(2002a)
Qin, G., Matthaeus, W.H., Bieber, J.W.: Astrophys. J. 578, L117

(2002b)
Ruffolo, D., Pianpanit, T., Matthaeus, W.H., Chuychai, P.: Astrophys.

J. 747, L34 (2012)
Saur, J., Bieber, J.W.: J. Geophys. Res. 104, 9975 (1999)

Schlickeiser, R.: Cosmic Ray Astrophysics. Springer, Berlin (2002)
Shaikh, D., Zank, G.P.: Astrophys. J. 656, L17 (2007)
Shalchi, A., Bieber, J.W., Matthaeus, W.H., Schlickeiser, R.: Astro-

phys. J. 642, 230 (2006)
Shalchi, A.: Nonlinear Cosmic Ray Diffusion Theories. Astrophysics

and Space Science Library, vol. 362. Springer, Berlin (2009)
Shalchi, A., Weinhorst, B.: Adv. Space Res. 43, 1429 (2009)
Shalchi, A.: Phys. Plasmas 22, 010704 (2015)
Tautz, R.C.: Comput. Phys. Commun. 181, 71 (2010)
Tautz, R.C., Shalchi, A.: J. Geophys. Res. 118, 642 (2013)
Tu, C.-Y., Marsch, E.: J. Geophys. Res. 98, 1257 (1993)
Turner, A.J., Gogoberidze, G., Chapman, S.C.: Phys. Rev. Lett. 108, 8

(2012)
Weinhorst, B., Shalchi, A., Fichtner, H.: Astrophys. J. 677, 671 (2008)
Weygand, J.M., Matthaeus, W.H., Dasso, S., Kivelson, M.G.: J. Geo-

phys. Res. Space Phys. 116, A08102 (2011)
Zank, G.P., Matthaeus, W.H.: Phys. Fluids A, Fluid Dyn. 5, 257 (1993)
Zhou, Y., Matthaeus, W.H., Dmitruk, P.: Rev. Mod. Phys. 76, 1015

(2004)


	Simulations of energetic particles interacting with nonlinear anisotropic dynamical turbulence
	Abstract
	Introduction
	Dynamical turbulence
	Description of magnetic turbulence
	Two-component turbulence
	The nonlinear anisotropic dynamical turbulence model

	Methodology
	Results
	Slab/2D turbulence with deltaB / B0 = 1.0
	Slab/2D turbulence with deltaB / B0 = 0.5
	Slab/2D turbulence with deltaB / B0 = 0.75
	Inﬂuence of the dissipation range spectral index
	Inﬂuence of the two-dimensional bendover scale
	Inﬂuence of the dissipation scales
	Inﬂuence of the inertial range spectral index

	Summary and conclusion
	Acknowledgements
	References


